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Introduction 1

The Intel® Integrated Performance Primitives (Intel® IPP) provide a rich and powerful set of
general and multimedia signal processing functions optimized for the PAX25x and PAX26x
family of processors, and Intel® PCA Processors with Intel® Wireless MMX ™ Technology (PCA
processors with MMX ™), which is compliant with the ARM Architecture V5TE. This Reference
Manual and the associated software libraries comprise version 5.0 Beta for the Intel® IPP.

% NOTE. Refer to the Release Notes provided with the Intel® IPP software kit
_ for the specific processors supported by the Intel® 1PP.

Related Publications

For the latest Intel® IPP information and updates, please refer to the release notes that are
packaged with the Intel® IPP software kit. For related information on the Intel® IPP, refer to the
documents listed in your developer’s kit’s user’s guide. Finally, for a list of the supplementary
texts, telecommunication standards, and multimedia signal processing standards that are
referenced throughout this document, please consult the bibliography in Appendix B.

About This Software

The Intel® IPP library comprises a rich and powerful set of general and multimedia signal
processing kernels optimized for maximum performance on the Intel® IPP. The Intel® IPP offers
application developers a number of significant advantages:

*  The primitives are optimized for maximum performance on the Intel® IPP. Therefore, Intel®
IPP enables migration to the Intel® IPP of many computationally intensive applications that
have traditionally required special-purpose DSP hardware.
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* The Intel® IPP drastically reduces development costs and profoundly accelerates
time-to-market by eliminating the need for hand optimization of routines commonly used for
multimedia signal processing. Developers are provided with an “off-the-shelf” optimized
solution.

*  The Intel® IPP is compatible with popular real-time embedded operating systems that run on
the Intel® IPP. The primitives are low-level and have been carefully designed to avoid host
operating system (OS) dependencies.

*  The Intel® IPP supports application porting across certain Intel platforms. A consistent
Application Programming Interface (API) is defined for the Intel® IPP that is supported by
Intel® IPP, and therefore applications can be ported easily without sacrificing performance.

Feature Summary

1-2

The Intel® 1PP includes general signal and image processing primitives optimized for the Intel®
IPP, as well as primitives that can be used to construct internationally standardized audio, video,
image, and speech encoder/decoders (CODECs) for the Intel® 1PP.

Primitives available for general one-dimensional (1D) signal processing include the following:

® vector initialization, arithmetic, statistics, thresholding, and measure

® deterministic and random signal generation

®  convolution, filtering, windowing, and transforms

And primitives for general two-dimensional (2D) image processing include the following:

® vector initialization, arithmetic, statistics, thresholding, and measure

®  color conversions

* morphological operations

® convolution, filtering, windowing, and transforms

Additional primitives are available that allow construction of the following multimedia CODECs:

®* video - ITU H.263 decoder, ISO/IEC 14496-2 MPEG-4 decoder, MPEG-4 encoder

® audio - ISO/IEC 11172-3 and 13818-3 (MPEG-1, -2) Layer 3 (“MP3”) decoder, MP3
encoder, AAC decoder

® speech - ITU-T G.723.1 CODEC and ETSI GSM-AMR CODEC

* image — ISO/IEC JPEG CODEC, JPEG 2000 CODEC

Cryptographic Primitives provide a rich and powerful set of cryptographic primitive functions:

*  Block cipher operations for DES/TDES, AES/Rijndael, Blowfish, and Twofish

® Data authentication algorithms for DES/TDES, Rijndaell128/192/256, Blowfish, and Twofish
®  One-way has function operations for SHA-1, SHA-256/384/512, and MD5

* Keyed-hash message authentication code for SHA-1, SHA-56/384/SHA512 and MD5
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®  Public key cryptographic operations including:
— Big number arithmetic operation/Modulo reduction, inversion, exponentiation
— Pseudo-random number generation
— Probable prime number generation
— RSA key generation, encryption and decryption
— DSA key generation, signing, and verification

Hardware Requirements

Intel® IPP libraries are compatible with the Intel® PXA27x Processor Developer’s Kit (Kit).
*  host machine: An Intel® Pentium® IV processor 1.5 GHz based PC with 512 MB RAM or
better
* target platform:
— Platforms that support Intel® PCA Processors with Intel® Wireless MMX™
Technology
— Intel® DBPXA250, DBPXA255, DBPXA262, or DBPXA263 Development
Platform

Software Requirements

The Intel® IPP libraries for the Intel® IPP are compatible with the following operating systems
and development environments:

®*  Microsoft Embedded Visual C++ 4.0 with Service Pack 4 and Pocket PC* 2003 SDK for
Microsoft Windows Mobile* 2003-based Pocket PC devices; Microsoft Embedded Visual
C++ 4.0 with Service Pack 4 and Smartphone* 2003 SDK for Microsoft Windows Mobile*
2003-based Smartphone devices

®*  Microsoft Windows Mobile* 2003 software

About This Manual

This manual describes the functions that comprise the Intel® Integrated Performance Primitives
(Intel® IPP) for the Intel® IPP. For the purposes of discussion, the functions have been organized
according to the type of operation they perform as well as by the data types on which they operate.
Each function is introduced by its name. This is followed by the function prototype, definitions of
its arguments, and a one-line description of its purpose. Beyond the one-line description, block
diagrams and/or equations are given, whenever appropriate, to capture the fine details of the
operation associated with a particular primitive.
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Intended Audience

This manual assumes that the reader is a skilled programmer having some working knowledge of
basic signal processing vocabulary and principles. In particular, the manual presentation is geared
towards developers who have had practical experience or theoretical exposure to one or more of
the following areas or applications:

* Digital Signal Processing (DSP)

®  image processing

®  speech recognition

®  speech coding

® audio coding

® image coding

® video coding

®  cryptography

% NOTE. A bibliography containing several tutorial references is provided in
_ Appendix B, “Bibliography.”.

Manual Organization

14

This manual is organized as follows:

Chapter 1, “Introduction.” Provides background and introductory information on the Intel® IPP
libraries. The focus is on the essential Intel® IPP API elements, including header files, binary files,
and data types. The remainder of this chapter defines Intel® IPP notation conventions and provides
an AP summary for Intel® IPP.

Chapter 2, “Vector Initialization, Arithmetic, Thresholding, and Statistics.” Gives details on the
vector primitives that are provided for initialization, arithmetic, statistics, thresholding, and
measure.

Chapter 3, “Signal Generation.” Provides information on primitives that offer deterministic and
pseudorandom sequence generation. Several primitives are available for synthesizing
deterministic signals, including both sinusoidal and triangular sequences. For pseudorandom data
streams, primitives that produce both uniformly and Gaussian distributed samples are available.

Chapter 4, “Filtering.” Provides information on the digital filtering primitives, including those
available for Finite Impulse Response (FIR), Infinite Impulse Response (IIR), cascaded biquad
IIR, and Least-Mean-Square (LMS) adaptive FIR filters.
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Chapter 5, “Windowing.” Provides information on non-parametric and parametric windowing
primitives.

Chapter 6, “Convolution.” Describes available discrete convolution primitives, including
primitives that can process both 1D and 2D signals. Discrete convolution is the operation that
defines the output sequence generated by a discrete-time Linear Time-Invariant (LTI) system in
response to an arbitrary input sequence.

Chapter 7, “Transforms.” Provides information on primitives that implement discrete transforms.
Primitives are available for calculating both forward and inverse discrete Fourier transforms using
the Fast Fourier Transform (FFT) algorithm with radix-2 block sizes.

Chapter 8, “MP3 Audio Decoder.” Provides information on primitives that can be used to
implement audio decoders such as those recommended in the ISO/IEC 11172-3 MPEG-1 standard,
such as., MPEG-1, layer 3 (“MP3”). Application developers can use the primitives described in
this chapter as building blocks for a performance-optimized custom audio decoder.

Chapter 9, “MP3 Audio Encoder.” Provides information on the primitives that can be used to
implement audio encoders such as those recommended by ISO/IEC 11172-3:1993, Information
technology — Coding of moving pictures and associated audio for digital storage media at up to
about 1.5Mbit/s-----Part 3: Audio. The API enables customers to develop audio encoders based on
the Intel XScale® microarchitecture.

Chapter 10, “Advanced Audio Coding.” Provides information on the advanced audio coding
(AAC) decoder for Intel XScale® microarchitecture, including a complete definition of the
function calls and data structures that comprise the APl. The AAC decoder API provides a variety
of decoder functions, including bit stream unpacking and AAC core decoding functions. This
provides customers great flexibility in configuring the decoder system.

Chapter 11, “H.263 Video Decoder and Processing.” Provides information on primitives that
implement the video decoder recommended in the ITU H.263 standard. Developers can use the
primitives described in this chapter to build a performance-optimized custom video decoder.

Chapter 12, “MPEG-4 Video Decoder.” Provides information on the primitives that implement the
video decoder recommended in the ISO/IEC 14496-2 MPEG-4 video standard. Developers can
use the primitives described in this chapter to build a performance-optimized custom video
decoder.

Chapter 13, “MPEG-4 Video Encoder.” Provides information on the primitives that implement the
ISO/IEC 14496-2 MPEG-4 video encoder. MPEG-4 is a widely used coding method for video
signals in various applications such as digital storage media, internet, various forms of wired or
wireless communication, etc.

Chapter 14, “GSM-AMR Speech CODEC.” Provides information to implement the speech
CODEC recommended in the ETSI GSM-AMR standard. Developers use the primitives described
in this chapter to build performance-optimized customized speech code.
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Chapter 15, “G.723.1 Speech CODEC.” Provides information on primitives that implement the
speech CODEC recommended in the ITU-T G.723.1 standard. Developers use the primitives
described in this chapter to build performance-optimized customized speech code.

Chapter 17, “Image Processing.” Provides information on primitives that are used for general
image processing such as filtering, linear transformations, color space conversions, and morphing.

Chapter 19, “JPEG Image CODEC.” Provides information on primitives that implement the image
decoder recommended in the ISO/IEC 10918 JPEG standard. Developers use the primitives
described in this chapter to build performance-optimized customized speech code.

Chapter 20, “JPEG 2000 Image CODEC.” Provides information on the primitives that implement
the JPEG 2000 image processing standard is described in ISO/IEC 15444-1. Information
technology — JPEG 2000 image coding system — Part 1: Core coding system.

Chapter 21, “Cryptography.” Provides information on primitives that implement various FIPS
published block ciphers, one-way hash functions, as well as integer modulus based public key
cryptographic systems.

Chapter 22, “Audio Toolkit APL.” Provides information on the Audio Toolkit API for the Intel®
Integrated Performance Primitives (Intel® IPP). This includes architecture, data structures, and
primitives for: Ephraim-Malay Noise Suppressor (EMNS), Acoustic Echo Canceller (AEC), Voice
Activity Detector (VAD), and the speech recognition Feature Extractor (FE) and Feature Encoder.

Chapter 23, “H.264 Video Decoder.” Provides information on primitives that implement the video
decoder recommended in the ITU-T Rec. H.264/ ISO/IEC 14496-10 Advanced Video Coding
standard. Developers use the primitives described in this chapter to build a performance-optimized
custom video decoder.

Appendix A, “Acronyms.” Defines the acronyms that appear in this book.

Appendix B, “Bibliography.” Provides a list of the supplementary texts, telecommunication
standards, and multimedia signal processing standards that are referenced throughout this chapter.

Appendix C, “extools.h and extrool.c files.” Includes the extrools.h header file and the extools.c
file that are referred to in other chapters of this manual.

“Index.” This index section provides an alphabetic list of all Intel® 1PP names and the page
numbers where they can be found.

Notations and Conventions

1-6

The following conventions are observed in this book:

®  Parameters appear in italic courier type.

*  Written code appears in plain courier type.

®  File names and function names to be defined are delimited by <>.
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Intel® Integrated Performance Primitives Library Interface

This section describes the Intel® IPP library interface, which is comprised of the following
elements:

®  binary image files

®  header files

® macros and constants

*  API/function prototypes

® datatypes

® integer scaling conventions

® error handling and status flags

*  Qm.n format and conventions

Binary Image Files

The primitives are contained in a collection of static binary libraries, organized by function type,
against which users must link their application object files. Two versions of the image files are
included in the release: a debug version and a release version. The defining difference between the
release and debug versions lies in the input argument error/bounds checking. In the debug library
build, each function validates its input parameters, and returns corresponding error messages
whenever appropriate. The release version maximizes performance by eliminating the overhead
associated with parameter error checking. It is strongly recommended that users link against the
debug library image during application development and debugging cycles, and then link against
the release image only to produce a final release candidate for their application.

Table 1-1 and Table 1-2 summarize the library binary files against which application object files
should be linked when using particular primitives.
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Table 1-1 Intel® IPP Binary Image Files for Windows* on Intel® PCA Processors
Function Types Pocket PC or Smartphone
Signal Processing (Chapters 2-7) ippSP_XSC50BPPC_r.l1ib
ippSP_XSC50BPPC_d.lib
Audio CODEC (Chapters 8-10) ippAC_XSC50BPPC_r.l1ib
ippAC_XSC50BPPC_d. l1ib
Video CODEC (Chapters 11-13) ippVC_XSC50BPPC_r.lib

ippVC_XSC50BPPC_d. Iib

Speech CODEC (Chapters 14 and 15) ippSC_XSC50BPPC_r.lib
ippSC_XSC50BPPC_d.lib

Image Processing (Chapter 17) ippIP_XSC50BPPC_r.1ib
ipplIP_XSC50BPPC_d.lib
JPEG CODEC (Chapters 19 and 20) ippJP_XSC50BPPC_r.lib
ippJP_XSC50BPPC_d.l1ib
Cryptographic (Chapter 21) ippCP_XSC50BPPC_r.lib
ippCP_XSC50BPPC_d.l1ib
Audio Toolkit API (Chapter 22) ippSR_XSC50BPPC_r.lib

ippSR_XSC50BPPC_d. lib
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Table 1-2 Intel® IPP Binary Image Files for Windows* on Intel® PCA Processors with Intel®
Wireless MMX ™ Technology
Function Types Pocket PC or Smartphone
Signal Processing (Chapters 2-7) ippSP_WMMX50BPPC_r.lib
ippSP_WMMX50BPPC_d.lib
Audio CODEC (Chapters 8-10) ippAC_WMMX50BPPC_r.lib
ippAC_WMMX50BPPC_d.lib
Video CODEC (Chapters 11-13) ippVC_WMMX50BPPC_r.lib
ippVC_WMMX50BPPC_d.lib
Speech CODEC (Chapters 14 and 15) ippSC_WMMX50BPPC_r.lib
ippSC_WMMX50BPPC_d.lib
Image Processing (Chapter 17) ippIP_WMMX50BPPC_r.lib
ippIP_WMMX50BPPC_d.lib
JPEG CODEC (Chapters 19 and 20) ippJP_WMMX50BPPC_r.lib
ippJP_WMMX50BPPC_d.lib
Cryptographic (Chapter 21) ippCP_WMMX50BPPC_r.lib
ippCP_WMMX50BPPC_d.lib
Audio Toolkit API (Chapter 22) ippSR_WMMX50BPPC_r.lib
ippSR_WMMX50BPPC_d.lib
Header Files

In order to maximize ease of use and portability, the prototypes for the complete set of Intel® 1PP
functions are defined in a set of ANSI-compliant ‘C’ language header files.

To link against any of the primitives contained in the Intel® IPP binary library image, the
application developer must include in the application source code the Intel® IPP header file
<ippdefs.h>. Then, the application source code must also include additional header files,
the precise choice of which depends on which particular primitives are being used.

To link against the vector manipulation and general DSP primitives described in Chapters 2
through 7, the application source code must include the Intel® IPP header file <ippSP. h>.

To link against the audio coding primitives described in Chapters 8 through 10, the
application source code must include the Intel® IPP header file <ippAC. h>.

To link against the video coding primitives described in Chapters 11 through 13 the
application source code must include the Intel® IPP header file <ippVC.h>.

To link against the speech coding primitives described in Chapters 14 and 15, the application
source code must include the Intel® IPP header file <ippSC. h>.

1-9
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® To link the image processing primitives that are described in Chapter 17, the application
source code must include the Intel® IPP header file <ipp1P.h>.

® To link the JPEG CODEC primitives that are described in Chapter 19 and the JPEG 2000
CODEC primitives that are described in Chapter 21, the application source code must include
the Intel® IPP header file <ippJP.h>.

® To link the cryptographic primitives that are described in Chapter 21, the application source
code must include the Intel® IPP header file <ippCP . h>.

® To link to the speech recognition API primitives that are described in Chapter 22 the
application source code must include the Intel® IPP header files <ippSR.h> and
<ippSP.h>.

Macros are defined symbolic names that are substituted with particular replacement text at
compilation or assembly time. The Intel® IPP API makes available for developers several useful
macros and constants (for example, =, 2w, min(a,b), max(a,b), etc.). Developers should refer to the
<*_h> header file for the most up-to-date list of available macros and constants.

Function Prototypes

1-10

The Intel® IPP API is comprised of ‘C’ language function prototypes for each primitive. The
function prototype naming scheme adheres to the following format:

ipp<domain><operation>_<function-specific modifier>_<datatype>_<data modifier>
(parameter list)

where the <> delimited fields are defined as follows:

<domain> - a single character that expresses the subset of functionality to which a given function
belongs. All of the primitives described in this manual belong to the Intel® IPP domain <s>,
where <s> denotes “signal processing.”

<operation> - an abbreviated descriptor that encapsulates the function behavior. For example,
“FIR”.

<function-specific modifier> - a short mnemonic string that augments the operation descriptor;
used typically when the operation name is imprecise. For example, consider the primitive
ipps_Threshold_LT_16s(...). The operation “Threshold” is a generic operation has several
valid interpretations. The function-specific modifier “LT” informs the user of the particular type of
threshold that is applied by this primitive, namely a “less than” threshold.

<data type> - Specifies bit depth and/or data layout using a string of the form:
#<u|s>[c]
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where: The “#” symbol is replaced by an integer that indicates the bit depth, either of the symbols

u” or “s” is included to denote, respectively, “unsigned integer” or “signed integer”, and the
optional symbol “c” denotes complex data. For the primitives described in this manual, the “#”
symbol is replaced by one of the following bit depth indicators: 8, 16, 32, or 64.

For example, the following primitive operates exclusively on a single data type:
ippsAdd_16s(lppl6s *pSrcl, lppl6s *pSrc2, lppl6s *pDst, int len)

The data type is specified by the suffix “_16s,” which implies that both the input and output
operands are represented by 16-bit signed integers (Ipp16s).

For functions that operate on more than one data type, the source data type is listed first, followed
by destination data type.

<data modifier> - The data modifier further describes the data associated with the operation. It
may contain implied parameters and/or indicate additional required parameters. The set of Intel®
IPP data modifiers is given in the list below. Data modifiers are always presented in alphabetical
order.

® D1 - one-dimensional signal (default)
®* D2 -two-dimensional signal

® | -in-place operation

e  Sfs - Saturated fixed scale operation

Function Arguments

The Intel® IPP API convention for function argument lists can be expressed generally as follows:
<input>, <input data length>, <output>, <output data length>,
<parameter list>

Whenever an input or output argument is a scalar rather than a vector (non-array), the associated
data length argument is eliminated, as in the case of the following example primitive that
computes the standard deviation of a vector:

ippsStdDev_16s(lppl6s * pSrc, int len, Ippl6és * pResult)

Whenever the input and output vectors have the same length, the input vector length argument will
be eliminated. For example, consider the following primitive for pointwise vector addition:

ippsAdd_16s(lppl6s * pSrcl, lppl6s * pSrc2, lIppl6s * pDst, int len)

1-11
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Data Types

Table 1-3 shows the collection of pure integer data types. All input and output arguments defined
in the API are either integer types, pointers to integer types, or data structures that contain integer
types. Both real and complex data structures have been defined. Complex vectors are constructed
by interleaving the real and imaginary components.

Table 1-3 Intel® IPP Data Types
Corresponding Data

Data Type Corresponding Data Type in C Type in ARM Assembly
1pp8u 8-bit unsigned integer, That is, unsigned char Byte
I1pp8s 8-bit signed integer, That is, char -
1ppl6u 16-bit unsigned integer, That is, unsigned short, unsigned short int -
Ippl6s 16-bit integer, That is, short, short int, signed short int Signed Halfword
1pp32u 32-bit unsigned integer, That is, unsigned int, unsigned long, unsigned long -

int
1pp32s 32-bit signed integer, That is, int, long, long int, signed long int Signed Word
1pp64u 64-bit unsigned integer -
Ipp64s 64-bit signed integer Signed Double Word
Ipp8sc struct { Ipp8s Re; Ipp8s Im; }, That is, real/imaginary interleaved complex -
Ippl6sc struct { 1pp16s Re; Ipp16s Im; }, That is, real/imaginary interleaved -

complex
Ipp32sc struct { Ipp32s Re; Ipp32s Im; }, That is, real/imaginary interleaved -

complex
Ipp64sc struct { 1pp64s Re; Ipp64s Im; }, That is, real/imaginary interleaved -

complex
IppStatus 32-bit signed integer, That is, int Signed Word

1-12
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Qm.n Format

Several of the primitives require a fractional interpretation of the integer input and/or output
arguments. The “Qm.n” format provides a standard mechanism for representing fractional values
using an integer data type. For example, a Q3.4 word is illustrated in Figure 1-1. The integer
binary word has been partitioned using an imaginary fixed point. The n-bits to the right of the
imaginary point comprise the fractional portion of the value being represented, and these n-bits act
as weights for negative powers of 2. The m-bits to the left of the imaginary point comprise the
integer portion of the value being represented, and these m-bits act as weights for positive powers
of 2. The overall signed Qm.n representation requires a total of m+n+1 bits, with the additional bit
required for the sign. As shown in Figure 1-1, the Q3.4 word requires a total of 3+4+1 = 8 bits.
The dynamic range for the Q3.4 word spans the open interval [-8, 8), and the precision (or
“quantization error”) is 1/16. The value represented by a particular set of Q3.4 bits is given by the
adding up the weighted powers of 2:

value = -b,2° +b2*+ ... +b 27

(o]
where b; € {0, 1} are the binary bits.
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Figure 1-

1 Q3.4 Format

Bit Index b7 be b5 b4 b3 bz b1 bo bie(o’l)

Value _923| 22| 21 | 20 | 21| 22|23 | 4
®

+— Imaginary point

sign [« m-bit integer portion — n-bit fractional portion —»

1-14

In general, the m+n+1-bit Qm.n word can be represented as shown in Figure 1-2. In the figure,
each bit cell has the value indicated by a power of 2, and the Qm.n word value is determined by
adding together the individual bit cell values weighted by the bits, b;, where

2; €{0,1},0<i<m+n, Thatis:

m+n

value=-b,, 2" +> b 2™

i=1

The parameter m (number of bits to the left of the point) determines the dynamic range:

range =[-2",2")

and the parameter n (number of bits to the right of the point) determines the precision:

precision =2""
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Figure 1-2 Qm.n Format

_2m 2m—1 20 2—1 2—n+1 2—n

Qm.n Conventions

Two conventions define the use of the Qm.n format in the particular case of the Intel® IPP API.
First, all Intel® IPP documentation (this manual, release notes, readme files, etc.) employs the
abbreviated notation “Qn” to denote “Qm.n,” where m=L-n-1, and L is the word length, in bits, of
the underlying data type. In other words, a particular value for m is implied by the combination of
a data type and the particular choice of n specified by “Qn.” The second naming convention is that
all primitives containing arguments interpreted as Qm.n are prototyped such that the suffix “Qn” is
appended to the prototype argument names. For the purposes of illustration, two detailed examples
are given next.

Example 1: Q0.15, Ippl6s

Consider a Q0.15 parameter with the underlying data type of 1pp16s. In this case, L=16, and
therefore a Q0.15 interpretation is as shown in Figure 1-3.
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Figure 1-3 Q0.15 Example with I1ppl16s
b15 by, b1 bo
_20 271 2—14 2—15

The value, dynamic range, and precision can be obtained easily using the expressions given for a
general Qm.n. After substituting the values m=0, n=15, it can be seen that the value, range, and
precision, respectively, are given by

15 i
value =—b,;2° + > b ;2"
i=1
range =[-11)
precision =27
An example primitive that makes use of Q0.15 in combination with 1pp16s is the FIR filter.

Example 2: Q16.15, 1pp32s

Next, consider a Q16.15 parameter with the underlying data type of 1pp32s. In this case, L=32,
and therefore a Q16.15 interpretation is as shown in Figure 1-4.

1-16
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Figure 1-4 Q16.15 Example with 1pp32s
b31 b30 b16 b15 bl bO
_ 216 215 21 20 2—14 2—15

The value, dynamic range, and precision can be obtained easily using the expressions given for a
general Qm.n. After substituting the values m=16 and n=15, it can be seen that the value, range,
and precision, respectively, are given by

31
value = —b, 2'° + b, 2"

i=1

range =[—65536,65536)

precision =27

Examples of primitives that make use of the Q16.15 interpretation in combination with 1pp32s
are the LMS adaptive FIR filter and the parametric Kaiser window.

Integer Scaling Conventions

The Intel® IPP API includes a scaling mechanism to achieve the maximum possible precision for
fixed-point integer operations. Many primitives perform internal computation using a precision
higher than the data types that are used for the input and output arguments. This higher precision
could be int, long, or long long (64-bit integer), depending on the implementation and
precision requirements. Therefore, it may be necessary to scale the function output arguments to
achieve a desired precision in the result. The Intel® IPP library provides saturated fixed scaling as
a mechanism that allows users to control the precision of output arguments. In functions that use
it, saturated fixed scaling (Sfs) is controlled by the input argument, “scalefactor.” For Sfs
functions, the output will be multiplied by 27SCalefactor pefare returning to the user. In other words,
for functions that internally accumulate results having precision higher than the input and output
arguments, it is possible for the user to control which subset of the most significant bits is
returned.

A typical function with scaled output has the following format:
ippsFunction_Sfs(..., int scaleFactor)
In all cases, the mnemonic “Sfs” denotes “Saturated fixed scaling.”
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The Sfs-enabled primitive performs the required calculation using an internal data type having a
higher precision (larger number of bits) than the input and/or output arguments. Once the
computation has been completed, the internal high-precision result is shifted by the number of bits
indicated in the scale factor (positive scalefactors correspond to right shifts, negative scalefactors
to left shifts) and copied into the low-precision output variable.

The user must choose carefully the scalefactor such that significant bits are not truncated from the
scaled result. For example, a scaled vector multiply (ippsMul_16s_Sfs()) using two 16-bit
input operands (1pp16s) could potentially produce a result having 32 significant bits. For this
primitive, the internal accumulator actually contains 32 bits. By supplying a scalefactor, the user is
able to choose any 16 out of the available 32 result bits. If the top 16 bits of the 32-bit result were
needed, then the user would set the scalefactor to 16. On the other hand, if the dynamic range of
the input data was constrained such that only 24 significant bits were contained in the internal
multiplication result, then the user would select a scalefactor of 8, which would mean that bits 8
through 23 (assuming that bit indices start from Q) were returned in the 16-bit output argument.
Clearly, when choosing a scalefactor, the user should consider the dynamic range of the data to
avoid the loss of the most significant result bits. Some detailed examples are given for scaled
functions later in the manual.

Note that Intel® IPP includes an overflow saturation mechanism. Upon overflow, non-scaled
Intel® IPP integer output arguments will saturate to the maximum possible absolute value. For
example, upon overflow, a non-scaled output argument of the type 1pp16s will saturate to 0x8000
(-32768) for a negative overflow or Ox7fff (32767) for a positive overflow.

Primitive Variables

1-18

To maximize flexibility, and ease of use the Intel® IPP API offers up to four variables on each
primitive:

®  Basic or default

* In-place (I)

®  Saturation fixed scale (Sfs)

® In-place and saturation fixed scale (ISfs)

For in-place primitive variables, input and output vectors share common memory. As a result, the
contents of the input vector are replaced by contents of the output vector upon return from the
primitive. For non-in-place variables, input and output vectors use distinct memory blocks, and
therefore the input vector remains unmodified upon return from the primitive call. As described
previously, saturation fixed scale primitive variables return outputs that have been scaled by
2-scaleFactor That is, output values have been shifted scaleFactor samples to the left or right for
negative or positive scaleFactor values, respectively. Non-Sfs primitive variables can be



Introduction 1

viewed as a special case of the Sfs variables in which scaleFactor has been set to 0. The 1Sfs
primitive variables combine in-place and saturation fixed scale behavior with the underlying
default primitive functionality.

In the interest of clarity and simplicity, the block diagrams, equations, and other detailed
behavioral descriptions given throughout the remainder of this manual apply only to the
non-in-place and non-scaled (so-called “default™) primitive variables, unless explicitly otherwise
noted. The user should be aware that the behavior of the scaled and in-place variables can be
understood easily by applying the generic in-place and scaled function behavioral rules given
above to the default behavioral specification.

Error Handling

The debug versions of the Intel® IPP libraries provide error handling facilities that monitor and
report on bad arguments (for example, NULL pointers, out-of-range parameter values) and “out of
memory” conditions. An appropriate status code is returned upon detection of an error condition.
For each function, a list of possible status codes is given under the detailed function descriptions
in the remaining chapters of this manual.

The release versions of the Intel® IPP libraries do not provide error handling facilities. Users are
responsible for ensuring that all primitives are used correctly. The benefit of disabled error
handling is a guarantee of maximum application performance. It is strongly recommended that
debug library builds be used during application debug and development cycles. Only when
building the final release of an application should developers link against the release version of the
Intel® IPP libraries.

Return Codes

IPP functions return status codes of the performed operation to report errors and warnings to the
calling program. Thus, it is up to the application to perform error-related actions and/or recover
from an error. The last value of the error status is not stored, and the user decides to check it or not
as the function returns. The status codes are of IppStatus type and are global constant integers. The
status codes and corresponding messages reported by the Intel® IPP for image processing are
listed in Table 1-4.
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Table 1-4

IPP Status Code and Messages

1-20

Symbolic Status
ippStsAlphaTypeErr
ippStsAnchorErr
ippStsBadArgErr
ippStsBadModulusErr
ippStsChannelErr
ippStsCoeffErr
ippStsCOIErr
ippStsContextMatchErr
ippStsDataTypeErr
ippStsDitherLevelsErr
ippStsDivByZero
ippStsDivByZeroErr
ippStsDivisorErr
ippStsDlyLinelndexErr
ippStsEpsValErr
ippStsEvenMedianMaskSize
ippStsFftFlagErr
ippStsFftOrderErr
ippStsFIRLenErr
ippStsFIRMRFactorErr
ippStsFIRMRPhaseErr
ippStsGammaRangeErr
ippStsGrayCoefSumErr

ippStsHugeWinErr
ippStslIROrderErr
ippStsinSufficientEntropy

Associated String

Illegal type of image composition operation

The anchor point is outside mask

Bad Arguments

Bad modulus caused a module inversion failure

Illegal channel number

Non-allowable values of the transformation coefficients
COl is out of range

The context parameter doesn't match to the operation
Bad or unsupported data type

Number of dithering levels is out of range

Zero value(s) of divisor in the function Div

An attempt to divide by zero

Divisor is equal zero, function is aborted

Invalid value of the delay line sample index

Negative epsilon value error

Even size of Median Filter mask was replaced by odd one
Invalid value of the FFT flag parameter

Invalid value of the FFT order parameter

The number iterations of FIR is less or equal zero
Wrong value of the MR FIR sampling factor parameter
Wrong value of the MR FIR sampling phase parameter
Gamma range bounds is less or equal zero

Sum of the ToGray conversion coefficients must be less or equal
tol

Kaiser window is too huge
The order of IR is less or equal zero

Insufficient entropy in the random seed and stimulus bit string
caused the prime/key generation to fail

continued
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Table 1-4

IPP Status Code and Messages (continued)

Symbolic Status

ippStsinterpolationErr
ippStsinvalidCryptoKeyErr

ippStsinvZero
ippStsJaehneErr
ippStsLengthErr
ippStsLnNegArg
ippStsLnZeroArg
ippStsMaskSizeErr
ippStsMemAllocErr
ippStsMirrorFlipErr
ippStsMisalignedBuf
ippStsMoment00ZeroErr
ippStsNanArg
ippStsNoErr
ippStsNoiseValErr
ippStsNoOperation

ippStsNotSupported ModeErr

ippStsNul IPtrErr
ippStsNumChannelsErr
ippStsOutOfRangeErr
ippStsOverFlowErr
ippStsQuadErr
ippStsRectErr
ippStsRelFregErr
ippStsResizeFactorErr
ippStsSampleFactorErr
ippStsSamplePhaseErr
ippStsScaleRangeErr
ippStsShiftErr

Associated String
Invalid interpolation mode

A compromised key causes suspension of requested cryptographic
operation

INF result. Zero value was met by InvThresh with zero level
Magnitude value is negative

Wrong value of string length

Negative value(s) of argument in the Ln function

Zero value<ippSP.h>(s) of argument in the Ln function
Invalid mask size

Not enough memory for the operation

Invalid flip mode

Misaligned pointer in operation in which must be aligned
Moment value M(0,0) is too small to continue calculation
Not a Number argument value warning

No error

Bad value of noise amplitude for dithering

No operation has been executed

The requested mode is currently not supported

Null pointer error

Bad or unsupported number of channels

Argument is out of range or point is outside the image
Overflow of result

The quadrangle degenerates into triangle, line or point
Size of the rectangle is less or equal to the one

Relative frequency value is out of range

Resize factor(s) less or equal to zero

Sampling factor is less or equal zero

Phase value is out of range: 0 <= phase < factor

Scale bounds is out of range

Value of shift is less than zero

continued
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Table 1-4

IPP Status Code and Messages (continued)
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Symbolic Status
ippStsSizeErr
ippStsSqrtNegArg
ippStsStepErr
ippStsStrideErr
ippStsThreshNegLevelErr
ippStsThresholdErr
ippStsToneFregErr
ippStsToneMagnErr
ippStsTonePhaseErr
ippStsTrnglAsymErr
ippStsTrnglFreqErr
ippStsTrngIMagnErr
ippStsTrnglPhaseErr
ippStsUnderFlowErr
ippStsWtOffsetErr
otherwise

Associated String

Wrong value of data size

Negative value(s) of argument in the function Sqrt

Step value is less or equal zero

The stride value is less than the row length

Negative value of the level in the threshold operation

Invalid threshold bounds

The frequency of the Tone is less 0 or greater or equal 0.5
The magnitude of the Tone is less or equal to zero

The phase of the Tone is less 0 or greater or equal 2*PI

The asymmetry of the Triangle is less -PI or greater or equal Pl
The frequency of the Triangle is less 0 or greater or equal 0.5
The magnitude of the Triangle is less or equal to zero

The phase of the Triangle is less 0 or greater or equal 2*PI
Underflow of result

Invalid offset value of wavelet filter

Unknown Status Code

The status codes ending with Err, except for the i ppStsNoErr status, indicate an error; the
integer values of these codes are negative. When an error occurs, the function execution is
interrupted. All other status codes indicate warnings. When a specific case is encountered, the
function execution will be completed and the corresponding warning status code will be returned.
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Structures and Enumerators

The Intel® IPP Image Processing Domain has a few widely used structures and enumerators.

The IppStatus constant enumerates the status code values returned by Intel® IPP functions,
indicating whether the operation was error free or not. See the “Error Handling.” section in this
chapter for more information on the set of valid status codes and corresponding error messages for
image processing functions.

The structure IppiRect for storing the geometric position and size of a rectangle is defined as
typedef struct {

int x;

int y;

int width;

int height;
} IppiRect;
where X, y denote the coordinates of the top left corner of the rectangle with dimensions width in
the x- direction and by height in the y- direction.
The structure IppiPoint for storing the geometric position of a point is defined as follows:
typedef struct {

int x;

int y;
} IppiPoint;
where X, y denote the coordinates of the point.

The structure IppiSize for storing the size of a rectangle is defined as
typedef struct {
int width;
int height;
} lIppiSize;
where width and height denote the dimensions of the rectangle in the x- and y directions,
respectively.

Some structures in the library are used to store function-specific (context) information. For
example, the IppiFFTSpec structure stores twiddle factors and bit reversal indexes that are
needed to compute the fast Fourier transform. Another example is the set of internal data
structures used by the statistical moment functions. These internal structures are not defined in
public header files, and the structure fields are not accessible to the user.
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Vector Initialization, Arithmetic, Thresholding, and Statistics

This chapter describes the set of Intel® Integrated Performance Primitives (Intel® IPP) that are
available for vector initialization and manipulation. In the interest of clarity and simplicity, the
block diagrams, equations, and other detailed behavioral descriptions given throughout the
remainder of this chapter apply only to the non—in—place and non-scaled (so—called “default”)
primitive variables, unless explicitly otherwise noted. The user should be aware that the behavior
of the scaled and in—place variables can be understood easily by applying to the default behavioral
specification the generic in—place and scaled function behavioral rules given in Chapter 1
“Introduction” of this manual. Users should also refer to this chapter for a detailed description of
the so—called “Qm.n” format that is used by some of the primitives described in this chapter for
fixed—point representation of floating point values.

The chapter is organized as follows:
“Vector Initialization” gives details on the primitives available for vector initialization.

“Vector Arithmetic — 16 Bit Data Type” covers 16-bit vector mathematical primitives.

“Vector Arithmetic — 32 Bit Data Type” covers 32-bit vector mathematical primitives.
“Vector Thresholding” covers vector sorting primitives.

“Vector Thresholding” covers vector thresholding primitives.

“Vector Statistics” covers vector statistics primitives.

“Vector Measure” covers vector measure (norms).

“Sampling Primitives” covers upsampling and downsampling primitives.

2-1
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Vector Initialization

Initialization primitives are available for vector copy, vector set, and vector zero. Vector copy
allows the contents of one vector to be duplicated in another vector. Vector set changes all
elements of a vector a single value. Vector zero changes all elements of a vector have the value
zero. Details on each of these primitives are given next.

Copy_16s

2-2

Prototype
IppStatus ippsCopy_l6s(const Ippl6és * pSrc, lppl6és * pDst, int len);

Description

Copies the 1en elements of the vector pointed to by pSrc into the 1en elements of the vector
pointed to by pDst. That is:

pDst[i] = pSrc[i],i =0,1,...,1en-1

Input Arguments
® pSrc - pointer to the source vector
®* len - number of elements contained in the source and destination vectors

Output Arguments
® pDst - pointer to the destination vector

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments
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Set 16s

Prototype
IppStatus ippsSet_16s(lppl6s val, lppl6és * pDst, int len);

Description
Initialize the Ien elements of the vector pointed by pDst to the value of the variable val. That is:

pDst[i] = val, len =0,1,...,1en-1

Input Arguments
* val - the value to be copied into the Ien elements of the vector pointed to by pDst
® len - the number of vector elements to be initialized

Output Arguments
pDst - pointer to the vector to be initialized

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

Zero _16s

Prototype
IppStatus ippsZero_16s(lppl6és * pDst, int len);
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Description
Initialize the 1en elements of the vector pointed by pDst to the value 0.

pDst[i] =0,i =0,1,...,1en-1

Input Arguments
Ien — the length of the vector to be initialized

Output Arguments
pDst — pointer to the vector to be initialized

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Vector Initialization Usage Examples

Example 2-1 shows the usage of the ippsZero_16s primitive. In the example, a vector containing
100 elements is initialized such that all elements have a value of 0.
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Example 2-1 ippsZero_16s

#include <stdio.h>
#include "ippdefs._h"
#include "ippSP.h"
int mainQ
{
Ippl6s x[100];
int i;

/* initialize vector x to zero */
ippsZero_16s(x, 100);

/* print out the output */
for (1 =0; 1 <100; 1 ++ ) {
printf("%6d™, x[i]);
it ( (+1)% == 0 ) {
printf(''\n"");
}
}

return(0);

Vector Arithmetic — 16 Bit Data Type

Mathematical primitives are available for pointwise vector add, subtract, multiply, square, square
root, exponentiation, natural logarithm, absolute value, and normalization. For non—pointwise
operations, a vector dot (inner) product is also included in the API. The details for all of these
primitives are given next. The “default” function behavior and arguments are described for each
primitive. Scaled and in—place primitive variables can be understood easily by applying the
behavioral rules given in Chapter 1.
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Abs_16s

2-6

Prototype
IppStatus ippsAbs_16s(const Ippl6és * pSrc, lppl6és * pDst, int len);
IppStatus ippsAbs_16s_1(lppl6s * pSrcDst, int len);

Description
Pointwise vector magnitude — Computes the absolute values of the elements of a real-valued
vector.

pDst[k] = |pSrc[k],k = 0,1,...,1en-1

Input Arguments
® pSrc, pSrcDst - pointer to the input vector
®* len - number of elements contained in both the input and output vectors

pSrc, pSrcDst - pointer to the input vector
len — number of elements contained in both the input and output vectors

Output Arguments
®* pDst, pSrcDst — pointer to the vector of absolute values
pDst, pSrcDst — pointer to the vector of absolute values

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments
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Add_16s

Prototype

IppStatus ippsAdd_16s(const lppl6s * pSrcl, const lppl6s * pSrc2, lppl6s
* pDst, int len);
IppStatus ippsAdd_16s_l(const Ippl6s * pSrc, Ippl6s * pSrcDst, int len);

IppStatus ippsAdd_16s_Sfs(const Ippl6s * pSrcl, const Ippl6s * pSrc2,
Ippl6s * pDst, int len, int scaleFactor);

IppStatus ippsAdd_16s_ISfs(const Ippl6és * pSrc, lIppl6s * pSrcDst, int
len, int scaleFactor);

Description
Pointwise vector addition — adds the elements of one vector to the corresponding elements of a
second vector. That is:

pDst[i] = pSrcl[i]+pSrc2[i],i =0,1,...,1len-1

Input Arguments

®  pSrcl, pSrc2, pSrc, pSrcDst — pointers to the input vector(s)

® len-number of elements contained in the input and output vectors

* scaleFactor - saturation fixed scalefactor (only for the scaled primitive)

AddC_16s

Prototype

IppStatus ippsAddC_16s (const Ippl6s * pSrc, lIppl6s val, Ippl6s * pDst,
int len);
IppStatus ippsAddC_16s_I1(Ippl6s val, lppl6s * pSrcDst, int len);

IppStatus ippsAddC_16s_Sfs (const lppl6s * pSrc, lppl6s val, lppl6s *
pDst, int len, int scaleFactor);
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IppStatus ippsAddC_16s_I1STfs(lppl6s val, lppl6és * pSrcDst, int len, int
scaleFactor);

Description

Pointwise vector addition of a constant — adds the value of the variable val to each of the elements
of a vector of length Ien. Thatis: pDst[i] = (pSrc[i])+val,i =0,1,...,1en-1

Input Arguments

® pSrc, pSrcDst — pointer to the input vector

* val - the value to be added to the elements of the input vector

®* len - number of elements contained in the input and output vectors

* scaleFactor - saturation fixed scalefactor (only for the scaled primitive)

Output Arguments
pDst, pSrcDst — pointer to the output vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Output Arguments
pDst, pSrcDst — pointer to the output vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

DotProd_16s

Prototype

IppStatus ippsDotProd_1l16s(const Ippl6s * pSrcl, const Ippl6s * pSrc2, int
len, Ippl6s * pResult);
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IppStatus ippsDotProd_16s_Sfs(const Ippl6s * pSrcl, const lppl6s * pSrc2,
int len, Ippl6és * pResult, int scaleFactor);
Description
Vector dot (inner) product — computes the dot (inner) product of two vectors. That is:
len-1
*pResult = Z pSrcil[j]-pSrc2[j]

J=0

Input Arguments

® pSrcl, pSrc2 - pointers to the input vectors
® len-number of elements contained in each of the input vectors
* scaleFactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pResult — pointer to the value of the dot product

Returns
® ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Exp_16s

Prototype
IppStatus ippsExp_16s(const Ippl6és * pSrc, lppl6és * pDst, int len);
IppStatus ippskExp_16s_1(lppl6s * pSrcDst, int len);

IppStatus ippskExp_16s_Sfs(const lppl6s * pSrc, lppl6és * pDst, int len,
int scaleFactor);

IppStatus ippsExp_16s 1SFs(lpplés * pSrcDst, int len, int scaleFactor);
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Description

Pointwise vector exponentiation — raises the constant e to the power of each vector element. That
is:

pSre(i] O<i<len

pDst[i] = e
Input Arguments
®  pSrc, pSrcDst - pointer to the vector of powers to which the constant e should be raised
®* len - number of elements contained in both the input and output vectors
* scaleFactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pDst, pSrcDst — pointer to the output vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Ln_16s

2-10

Prototype

IppStatus ippsLn_16s(const Ippl6s * pSrc, Ippl6s * pDst, int len);

IppStatus ippsLn_16s_I1(1ppl6s * pSrcDst, int len);

IppStatus ippsLn_16s_Sfs(const Ippl6s * pSrc, Ippl6s * pDst, int len, int
scaleFactor);

IppStatus ippsLn_16s_ISfs(lppl6s * pSrcDst, int len, int scaleFactor);

Description

Pointwise vector natural logarithm — computes the natural log (log base e) of each element of a
vector. That is:

pDst[i] = In(pSrcJ[i]) 0O<i<len
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Input Arguments

®  pSrc, pSrcDst - pointer to the input vector

® len-number of elements contained in both the input and output vectors
® scaleFactor - saturation fixed scalefactor (scaled primitive only)

% NOTE. The elements of the input vector should be positive, or the result of this
_ function is unpredictable

Output Arguments
pDst, pSrcDst- pointer to the output vector

Returns

®  ippStsNoErr —no error

®  ippStsErr —input is not positive

® ippStsBadArgErr — bad arguments

Mul 16s

Prototype

IppStatus ippsMul_16s(const lppl6s * pSrcl, const lppl6s * pSrc2, lppl6s
* pDst, int len);
IppStatus ippsMul_16s_I(const Ippl6s * pSrc, Ippl6s * pSrcDst, int len);

IppStatus ippsMul_16s_Sfs(const lppl6s * pSrcl, const lppl6s * pSrc2,
Ippl6s * pDst, int len, int scaleFactor);

IppStatus ippsMul_16s_ISfs(const Ippl6s * pSrc, lppl6s * pSrcDst, int
len, int scaleFactor);

Description

Pointwise vector multiplication — multiplies the elements of one vector by the corresponding
elements of a second vector. That is:
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pDst[i] = pSrcl[i]xpSrc2[i],i =0,1,...,1en-1

Input Arguments

®  pSrc, pSrcl, pSrc2, pSrcDst — pointers to the input vector(s)

® len-number of elements contained in the input and output vectors
® scaleFactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pDst, pSrcDst — pointer to the vector containing the output product

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

MulC_16s

2-12

Prototype

IppStatus ippsMulC_16s(const lppl6s * pSrc, Ippl6s val, Ippl6és * pDst,
int len);

IppStatus ippsMulC_16s_Sfs(const lIppl6s * pSrc, lIppl6s val, lIppl6s *
pDst, int len, int scaleFactor);

IppStatus ippsMulC_16s_I1(lppl6s val, lppl6és * pSrcDst, int len);

IppStatus ippsMulC_16s_I1Sfs(lppl6s val, lppl6és * pSrcDst, int len, int
scaleFactor);

Description

Pointwise vector multiplication by a constant — multiplies each element of a vector by the value of
the variable val. That is:

pDst[i] = pSrc[i]lxval,i =0,1,...,len-1

Input Arguments
®  pSrc, pSrcDst - pointer to the input vector
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® val - the value to be multiplied with the elements of the input vector
® len-number of elements contained in the input and output vectors
* scaleFactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pDst, pSrcDst — pointer to the vector containing the output product

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Normalize 16s

Prototype

IppStatus ippsNormalize_16s(const lppl6s * pSrc, lpplés * pDst, int len,
Ippl6s offset, Int normFactor);

IppStatus ippsNormalize_16s_Sfs(const Ippl6s * pSrc, Ippl6s * pDst, int
len, Ippl6s offset, int normFactor, int scaleFactor);

Description

Vector normalization — subtracts the value of the variable offset from the elements of a vector,
and then divides the resulting offset vector by the value of the variable normFactor. That is:

pDst[Kk] = (pSrc[k]-offset)/(normFactor),k =0,1,2,...,len-1
® pSrc - pointer to the input vector (the vector to be normalized)
® len-number of elements contained in the input and output vectors

* offset - the constant to be subtracted from the elements of the input vector

®* normFactor — the constant by which the offset elements of the input vector are divided
normFactor is not zero

® scaleFactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pDst — pointer to the normalized output vector
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Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Sqrt_16s

Prototype
IppStatus ippsSqrt_l1l6s(const Ippl6s * pSrc, lppl6és * pDst, int len);
IppStatus ippsSqrt_16s_I1(I1ppl6s * pSrcDst, int len);

IppStatus ippsSqrt_16s_Sfs(const lIppl6s *pSrc, Ippl6és * pDst, int len,
int scaleFactor);

IppStatus ippsSqrt_16s_ISfs(lppl6s * pSrcDst, int len, int scaleFactor);

Description
Pointwise vector square root — computes the square root of each vector element. That is:

pDst[i] = J/pSrc[i],i =0,1,...,1en-1

Input Arguments

® pSrc, pSrcDst - pointer to the vector of which to compute the pointwise square root
® len-number of elements contained in both the input and output vectors

* scaleFactor - saturation fixed scalefactor (scaled primitive only)

g NOTE. The elements of the input vector must be non—negative, otherwise the

e behavior of this function is undefined, and unpredictable output values may
result.

Output Arguments

pDst, pSrcDst — pointer to the square root output vector
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Returns

®  ippStsNoErr —no error

® ippStsErr - input is negative

® ippStsBadArgErr — bad arguments

Sqr_16s

Prototype
IppStatus ippsSqr_16s(const lIppl6és * pSrc, lppl6és * pDst, int len);
IppStatus ippsSqr_16s_1(Ippl6s * pSrcDst, int len);

IppStatus ippsSqr_16s_Sfs(const lppl6s * pSrc, Ippl6és * pDst, int len,
int scaleFactor);

IppStatus ippsSqr_16s_ISFfs(lppl6és * pSrcDst, int len, int scaleFactor);

Description
Pointwise vector square — raises each element of a vector to the second power. That is:

pDst[i] = pSrcz[i] , 1 =0,1,...,len-1

Input Arguments

®  pSrc, pSrcDst - pointer to the input vector

®* len-number of elements contained in both the input and output vectors
* scaleFactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pDst, pSrcDst — pointer to the squared output vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
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Sub_16s

2-16

Prototype

IppStatus ippsSub_16s(const lppl6s * pSrcl, const lppl6s * pSrc2, lppl6s
* pDst, int len);

IppStatus ippsSub_16s_I(const Ippl6s * pSrc, Ippl6s * pSrcDst, int len);

IppStatus ippsSub_16s Sfs(const Ippl6s * pSrcl, const Ippl6s * pSrc2,
Ippl6s * pDst, int len, int scaleFactor);

IppStatus ippsSub_16s_1Sfs(const Ippl6és * pSrc, lIppl6s * pSrcDst, int
len, int scaleFactor);

Description

Pointwise vector subtraction — subtracts the elements of one vector from the corresponding
elements of a second vector. That is:

pDst[i] = pSrc2[i]-pSrci[i],i =0,1,...,len-1

Input Arguments

®  pSrc, pSrcl, pSrc2, pSrcDst- pointers to the input vector(s)

® len-number of elements contained in the input and output vectors

* scaleFactor - saturation fixed scalefactor (only for the scaled primitive)

Output Arguments
pDst, pSrcDst — pointer to the output vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
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SubC_16s_I

Prototype

IppStatus ippsSubC_16s (const Ippl6s * pSrc, lIppl6s val, lIppl6s * pDst,
int len);

IppStatus ippsSubC_16s_I1(1ppl6s val, lppl6és * pSrcDst, int len);

IppStatus ippsSubC_16s_Sfs (const lppl6és * pSrc, lppl6s val, lpples *
pDst, int len, int scaleFactor);

IppStatus ippsSubC_16s_ISfs(lppl6s val, lppl6és * pSrcDst, int len, int
scaleFactor);

Description

Pointwise vector subtraction of a constant — subtracts the value of the variable var from each
element of a vector. That is:

pDst[i] = pSrc[i]-val,i =0,1,...,1len-1

Input Arguments

®  pSrc, pSrcDst - pointer to the input vector

® len-number of elements contained in the input and output vectors

* val - the value to be subtracted from the elements of the input vector

® scaleFactor - saturation fixed scalefactor (only for the scaled primitive)

Output Arguments
pDst, pSrcDst — pointer to the output vector

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments
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SubCRev_16s 1

2-18

Prototype

IppStatus ippsSubCRev_16s_I1(Ippl6s val, lppl6és * pSrcDst, int len);

IppStatus ippsSubCRev_16s_1Sfs(lppl6s val, Ippl6s * pSrcDst, int len, int
scaleFactor);

Description

Pointwise inverse vector subtraction of a constant — subtracts each element of a vector from the
value of the variable val . That is:

pSrcDst[i] = val -pSrcDst[i], 1 =0,1,...,len-1

Input Arguments
* val —value from which the elements of the input vector are subtracted

® pSrcDst - pointers to the vector containing the elements to be subtracted from the value of
the variable val

®* len - number of elements contained in the input and output vectors
* scaleFactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pSrcDst — pointer to the output vector
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Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Usage Examples of Vector Math for 16-Bit Data

Example 2-2 illustrates the usage of the ippsAdd_16s primitive. Two vectors of length 100 are
added together pointwise, and then the result is stored in a third vector.

Example 2-2 ippsAdd_16s

#include <stdio.h>
#include "ippdefs.h"
#include "ippSP.h"

int mainQ
{
Ippl6s x[100], y[100], z[100];
int 1;

/* Initialize x and y vector */

for (1 =0; i <100; 1 ++ ) {
x[i] = y[i] = i;

}

/* Add the vectors x and y, store result in the vector z */
ippsAdd_16s(x, y, z, 100);

/* print out the output */
for (1 =0; i <100; 1 ++ ) {
printf("%6d"”, z[i]);
if ( (+1)% == 0 ) {
printf(''\n"");
}
}

return(0);
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Example 2-3 illustrates the usage of the ippsMul_16s primitive. One vector of length 100 is
multiplied pointwise with a second vector of length 100, and then the result is stored in a third

vector.

Example 2-3 ippsMul_16s

#include <stdio.h>
#include "ippdefs.h"
#include "ippSP.h"

int mainQ

{
Ippl6s x[100], y[100], z[100];
int 1;

/* Initialize x and y vector */
for (1 =0; i <100; i ++) {

x[i] = y[i] = 1;
}

/* Multiply y vector to x vector and store result in z vector*/
ippsMul_16s(x, y, z, 100);

/* print out the output */
for (1 =0; i <100; 1 ++ ) {
printf("%6d”, z[i]);
if ( (+1)% == 0 ) {
printf(''\n"");
}
}

return(0);
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Example 2-4 illustrates the usage of the ippsNormal ize_16s primitive. A value of 50 is
subtracted from a vector containing 100 elements. Next, the resulting vector is divided pointwise

by a scalefactor of 3.

Example 2-4 ippsNormalize_16s

#include <stdio.h>
#include "ippdefs.h"
#include "ippSP.h"

int main(Q)

{
Ippl6és x[100], y[100], offset = 50;
int i, normFactor = 3;

/* Initialize x and y vector */

for (1 =0; i1 <100; i ++) {
x[i] = i;

}

/* Threshold the vector x */
ippsNormalize_16s(x, y, 100, offset, normFactor);

/* print out the output */
for (1 =0; i1 <100; i ++) {
printf(C'%6d”, y[il1);
it ( (i+D)%5 == 0 ) {
printf(''\n"");
}
}

return(0);
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Example 2-5 illustrates the usage of the ippsDotProd_16s primitive. The dot product is
computed for two vectors, each containing 100 elements.

Example 2-5 ippsDotProd_16s

#include <stdio.h>
#include "ippdefs.h"
#include "ippSP.h"

int main(Q)
{

Ippl6és x[100], y[100], result;
int i;

/* Initialize x and y vector */

for (i =0; 1 <100; i ++) {
x[i] = y[i] = 1;

}

/* Dot product y vector to x vector */
ippsDotProd_16s(x, y, 100, &result);

/* print out the output */
printf("%6d", result);

return(0);
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Example 2-6 illustrates the usage of the ippsLn_16s_1 primitive.

Example 2-6 ippsLn_16s_I

#include <stdio.h>
#include "ippdefs._h"

#include "ippSP.h"

int mainQ

{
Ippl6s x[100];
int 1;

/* Initialize x */

for (1 =0; 1 <100; i ++ ) {
x[i] =1 + 1;

}

/* Calculate the natural logarithm of vector x */
ippsLn_16s_I1(x, 100);

/* print out the output */
for (1 =0; i1 <100; i ++) {
printf("%6d", x[i]);
it ( (i+D)%5 == 0 ) {
printf(''\n");
}
}

return(0);

Vector Arithmetic — 32 Bit Data Type

Mathematical primitives are available for pointwise vector add, subtract, multiply, square, square
root, exponentiation, natural logarithm, absolute value, and normalization. For non—pointwise
operations, a vector dot (inner) product is also included in the API. The details for all of these
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primitives are given next. The “default” function behavior and arguments are described for each
primitive. Scaled and in-place primitive variables can be understood easily by applying the
behavioral rules given in Chapter 1.

10Log10 32s

2-24

Prototype

IppStatus ippsl0LoglO_32s (const Ipp32s * pSrc, Ipp32s * pDst,
int len);
IppStatus ippsl0Logl0_32s_1 (Ipp32s * pSrcDst, int len);

IppStatus ippslOLoglO_32s_Sfs (const Ipp32s * pSrc, Ipp32s * pDst, int
len, int scaleFactor);

IppStatus ippsl0LoglO_32s_I1STs (Ipp32s * pSrcDst, int len, int
scaleFactor);

Description

Pointwise vector scaled base 10 logarithm — This function computes the log base 10 of each
element of a vector and scales the result by 10.0. That is:

pDst[k] =10.0 * log10( pSrcl[k]), k=0, 1, ..., len-1
This function is used in conversion to decibels. The output is rounded to the nearest integer.

Input Arguments
®  pSrc, SrcDst — pointer to the input vector
® len - number of elements contained in the input and output vectors (0 < Ien < 65536)

® scaleFactor - saturation fixed scale factor (scaled primitives only)
(-32 < scaleFactor < 32)

g NOTE. The elements of the input vector must be positive, or the result of this
_ function is unpredictable.
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Output Arguments
pDst, pSrcDst — pointer to the output vector

Returns

®  ippStsNoErr —no error

® ippStsError —input is not positive

®  ippStsNullPtrErr — pSrc, pSrcDst, or pDst is NULL

® ippStsLengthErr - illegal value for len

® ippStsRangeErr — pSrc[i]<0 or scaleFactor is out of range

Abs_32s

Prototype

IppStatus ippsAbs_32s (const lpp32s *pSrc, lIpp32s *pDst, int len);
IppStatus ippsAbs_32s 1 (const Ipp32s *pSrcDst, int len);

IppStatus ippsAbs_32sc32s (const Ipp32sc *pSrc, Ipp32s *pDst, int len);

IppStatus ippsAbs_32sc32s_Sfs (const Ipp32sc *pSrc, Ipp32s *pDst, int
len, int scaleFactor);

Description

Pointwise vector magnitude — This function computes the absolute values of the elements of a
real-valued (or complex valued in the case of ippAbs_32sc32s) vector.

pDst[k] = [pSrc[Kk]], k=0, 1, ..., len-1

Input Arguments
®  pSrc, pSrcDst - pointer to the input vector
® len-number of elements contained in both the input and output vectors (0 < Ien < 65536)

® scaleFactor - saturation fixed scale factor (scaled primitives only)
(-32 < scaleFactor < 32)

Output Arguments
® pDst, pSrcDst - pointer to the vector of absolute values
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Returns

®  ippStsNoErr —no error

®  ippStsNullPtrErr — pSrcold, pSrcDst, or pDst is NULL
® ippStsLengthErr - illegal value for len

®* ippStsRangeErr — scaleFactor is out of range

Add_32s

2-26

Prototype

IppStatus ippsAdd_32s(const Ipp32s * pSrcl, const Ipp32s * pSrc2, lpp32s
* pDst, int len);

IppStatus ippsAdd_32s Sfs(const Ipp32s * pSrcl, const Ipp32s * pSrc2,
Ipp32s * pDst, int len, int scaleFactor);

Description

Adds the elements of two vectors. Results in a third vector.

pDst[k] = pSrc1[k] + pSrc2[k] , k=0, 1, ..., len- 1.

Adds the elements of two vectors with output scaling. Results in a third vector.
pDst[k] = (pSrcl[K] + pSrc2[K] ) x 2-ScaleFactor \ —q 1 |en-1.

Input Arguments

® pSrcl - pointer to the vector to add

® pSrc2 - pointer to the vector to be added

® len - length of the input and output vector

® scaleFactor - scaling factor — range:[-31,31]

Output Arguments
pDst - pointer to the output vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments. Returned for any of the following conditions:
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— apointer was NULL
— one or more vectors was 0 in length.
— scaleFactor was outside the range of -31 to 31

Add_32sc

Prototype

IppStatus ippsAdd_32sc(const Ipp32sc * pSrcl, const lpp32sc * pSrc2,
Ipp32sc * pDst, int len);

IppStatus ippsAdd_32sc_Sfs(const lIpp32sc * pSrcl, const Ipp32sc * pSrc2,
Ipp32sc * pDst, int len, int scaleFactor);

Description

Adds the elements of two vectors. Results in a third vector.

pDst[Kk].re = pSrcl[k].re + pSrc2[k].re,

pDst[k].im = pSrc1[k].im + pSrc2[k].im

wherek=0,1, ..., len-1.

Adds the elements of two vectors with output scaling. Results in a third vector.
pDst[k].re = ( pSrc1[K].re + pSrc2[K].re ) x 2-ScaleFactor

pDst[k].im = ( pSrc1[Kk].im + pSrc2[k].im ) x 2-ScaleFactor

wherek=0,1, ..., len-1.

Input Arguments

® pSrcl - pointer to the vector to add

® pSrc2 - pointer to the vector to be added

® len - length of the input and output vector

® scaleFactor - Scaling factor — range:[-31,31]

Output Arguments
pDst - pointer to the output vector
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Returns

ippStsNoErr —no error

ippStsBadArgErr — bad arguments. Returned for any of the following conditions:
— apointer was NULL

— one or more vectors was 0 in length.

— scaleFactor was outside the range of -31 to 31

AddWeightedQ31 32s
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Prototype
IppStatus ippsAddWeightedQ31l_32s (const lpp32s *pSrcold,

const Ipp32s *pSrcNew, Ipp32s *pDst, int len, Ipp32s weightQ31l);

IppStatus ippsAddWeightedQ31l_32s_ 1 (const Ipp32s *pSrcNew,

Ipp32s *pSrcDst, int len, Ipp32s weightQ31);

Description

This function calculates the weighted average of two vectors. The weighted average expressed in
the equation

X gest (K) = weight - X, (k) + L—weight) - X, (k)

new

where k is the element index within the vector and weight is a Q31 value between 0 and 1.

Input Arguments

pSrcOold, pSrcDst — pointer to the real-valued vector representing the previous average
pSrcNew — pointer to the real-valued vector representing the new measurement

Ien — number of elements contained in both input and output vectors (0 < Ien < 65536)
weightQ31 - real-valued Q31 scalar (0.0 31 < weightQ31 < 1.0 31)

Output Arguments
pDst, pSrcDst — pointer to the real-valued output vector

Returns

ippStsNoErr —no error
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®  ippStsNullPtrErr — pSrcOld, pSrcNew, pSrcDst, or pDst is NULL
® ippStsLengthErr —illegal value for len
® ippStsRangeErr —weightQ31 is out of range

Div_32s Sfs

Prototype

IppStatus ippsDiv_32s_Sfs (const Ipp32s *pSrcl, const Ipp32s *pSrc2,
Ipp32s *pDst, int len, int scaleFactor);

IppStatus ippsDiv_32s_ISfs (const lpp32s *pSrc, Ipp32s *pSrcDst, int len,
int scaleFactor);

IppStatus ippsDivQl5_32s (const Ipp32s *pSrcl, const lpp32s *pSrc2,
Ipp32s *pDstQl5, int len);

IppStatus ippsDivQl5 _32s 1 (const lpp32s *pSrc, Ipp32s *pSrcDst, int
len);

Description

Pointwise vector division — This function divides the elements of one vector by the corresponding
elements of a second vector. That is:

pDst[K] = pSrc1[K] / pSrc2[k], k=10, 1, ..., len-1

Input Arguments

® 1pSrc,pSrcl, pSrcDst - pointer to the numerator input vector

®  pSrc2 - pointer to the denominator input vector

® len-number of elements contained in the input and output vectors (0 < len < 65536)

* scaleFactor - saturation fixed scale factor (scaled primitives only) (-32 < scaleFactor

<32)

Output Arguments

® pDstQ15, pSrcDst — pointer to the Q15 format output vector (-32768.0 15 < pDstQ15[K]
< 32768.0 Q15)

® pDst, pSrcDst - pointer to the output vector
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Returns

®  ippStsNoErr —no error

®  ippStsNullPtrErr — pSrc, pSrcil, pSrc2, pSrcDst, pDstQ15, or pDst is NULL
® ippStsLengthErr —illegal value for len

®* ippStsRangeErr — scaleFactor is out of range

FilterMedian_32s
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Prototype
IppStatus ippsFilterMedian_32s (const Ipp32s* pSrc, lpp32s* pDst,
int len, int maskSize);

IppStatus ippsFilterMedian_32s 1 (Ipp32s* pSrcDst, int len, int
maskSize);

Description

This function computes the median values for each element of the input array pSrcDst, and stores
the result in pSrcDst. See Chapter 17, “Image Processing”, for a description of 2-dimensional
median filtering primitives.

% NOTE. The value of a non-existent point is equal to the last point value.
= Specifically, x[-1]=x[0] and x[len]=x[len-1].

Input Arguments
® pSrcDst — pointer to input and output array
® len - number of elements contained in the input and output vectors (0 < Ien < 65536)

®* maskSize — median mask size. If an even value is specified, the function subtracts 1 and uses
the odd value of the filter mask for median filtering (0 < maskSize < 256).

Output Arguments
pSrcDst — pointer to input and output array



Vector Initialization, Arithmetic, Thresholding, and Statistics 2

Returns
®  ippStsNoErr —no error
®  ippStsNullPtrErr — pSrc, pSrcDst, or pDst is NULL

® ippStsSizeErr — indicates an error when len is less than or equal to 0, maskSize is less
than or equal to zero, maskSize is greater than 256, or maskSi ze is greater than len

® ippStsEvenMedianMaskSize — indicates a warning when the median mask length is even

Ln_32s

Prototype
IppStatus ippsLn_32s (const Ipp32s * pSrc, Ipp32s * pDst, int len);
IppStatus ippsLn_32s | (Ipp32s * pSrcDst, int len);

IppStatus ippsLn_32s_Sfs (const lpp32s * pSrc, Ipp32s * pDst, int len,
int scaleFactor);

IppStatus ippsLn_32s_ISfs (Ipp32s * pSrcDst, int len, int scaleFactor);

Description

Pointwise vector natural logarithm — This function computes the natural log (log base e) of each
element of a vector. That is:

pDst[k] =In( pSrc1[k]), k=0, 1, ..., len-1
The output is rounded to the nearest integer.

Input Arguments
®  pSrc, SrcDst - pointer to the input vector
® len - number of elements contained in the input and output vectors (0 < Ien < 65536)

* scaleFactor — saturation fixed scale factor (scaled primitives only)
(-32 < scaleFactor < 32)
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E NOTE. The elements of the input vector must be positive, or the result of this
_ function is unpredictable.

Output Arguments
pDst, pSrcDst — pointer to the output vector

Returns

®  ippStsNoErr —no error

® ippStsError —input is not positive

®  ippStsNullPtrErr — pSrc, pSrcDst, or pDst is NULL

® ippStsLengthErr —illegal value for len

® ippStsRangeErr — pSrc[i]<0 or scaleFactor is out of range

MagSquared_32sc¢32s
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Prototype

IppStatus ippsMagSquared_32sc32s (const lpp32sc *pSrc,
Ipp32s *pDst, int len);

IppStatus ippsMagSquared_32sc32s_Sfs (const Ipp32sc *pSrc,
Ipp32s *pDst, int len, int scaleFactor);

Description

This function calculates the squared magnitude of the entries of a complex vector. (Note: This
primitive performs the same role as the ippsPowerSpectr primitive on the IA32 platform.)

pDst[k] = |pSrc[k]|% k=0, 1, ..., len-1

Input Arguments
®  pSrc - pointer to the complex-valued vector that contains the FFT output
®* len - number of elements contained in both input and output vectors (0 < Ien < 65536)
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®* scaleFactor - saturation fixed scale factor (scaled primitive only)
(-32 < scaleFactor < 32)

Output Arguments
pDst - pointer to the real-valued magnitude squared output vector

Returns

®  ippStsNoErr —no error

®  ippStsNullPtrErr —pSrc or pDst is NULL

® ippStsLengthErr —illegal value for len

®* ippStsRangeErr — scaleFactor is out of range

Mul_32s32sc_Sfs

Prototype

IppStatus ippsMul_32s32sc_Sfs (const Ipp32s *pSrcl,
const Ipp32sc *pSrc2, lIpp32sc *pDst, int len, int scaleFactor);

IppStatus ippsMul_32s32sc_ISfs (const 1pp32s *pSrc, lpp32sc *pSrcDst,
int len, int scaleFactor);
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Description
This function performs pointwise multiplication of a real vector by a complex vector.

pDst[k].re =pSrc1[k] * pSrc2[k].re, k=0,1, ..., len-1
pDst[K].im =pSrc1[k] * pSrc2[k].im, k=0,1, ..., len-1

Input Arguments

®  pSrc, pSrcl - pointer to the real-valued input vector

® pSrc2, pSrcDst - pointer to the complex-valued input vector

® len-number of elements contained in both input and output vectors (0 < Ien < 65536)
® scaleFactor - saturation fixed scale factor (-32 < scaleFactor < 32)

Output Arguments
pDst, pSrcDst — pointer to the complex-valued product (output) vector

Returns

®  ippStsNoErr —no error

®  ippStsNullPtrErr — pSrc, pSrcil, pSrc2, pSrcDst, or pDst is NULL
® ippStsLengthErr —illegal value for len

® ippStsRangeErr — scaleFactor is out of range

Mul 32sc¢

Prototype

IppStatus ippsMul_32sc(const Ipp32sc * pSrcl, const lpp32sc * pSrc2,
Ipp32sc * pDst, int len);

IppStatus ippsMul_32sc_Sfs(const Ipp32sc * pSrcl, const lpp32sc * pSrc2,
Ipp32sc * pDst, int len, int scaleFactor);
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Description

Multiplies the elements of two vectors. Results in a third vector.

pDst[Kk].re = pSrcl[k].re x pSrc2[K].re - pSrc1[k].im x pSrc2[K].im,

pDst[k].im = pSrc1[k].re x pSrc2[k].im + pSrc1[K].im x pSrc2[K].re

Wherek=0,1, ..., len-1.

Multiplies the elements of two vectors with output scaling. Results in a third vector.
pDst[k].re = (pSrci[k].re x pSrc2[k].re - pSrc1[K].im x pSrc2[k].im) x 2-ScaleFactor,
pDst[k].im =( pSrc1[K].re x pSrc2[K].im + pSrci[k].im x pSrc2[K].re) x 2-ScaleFactor
Wherek=0, 1, ..., len-1.

Input Arguments

® pSrcl - pointer to the vector to be multiplied
®  pSrc2 - pointer to the vector to multiply

® len - length of the input and output vector

® scaleFactor - scaling factor — range:[-31,31]

Output Arguments
pDst - pointer to the output vector

Returns

®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments. Returned for any of the following conditions:
— apointer was NULL
— one or more vectors was 0 in length.
— scaleFactor was outside the range of -31 to 31

Mul 32s

Prototype

IppStatus ippsMul_32s(const 1pp32s * pSrcl, const Ipp32s * pSrc2, lpp32s
* pDst, int len);
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IppStatus ippsMul_32s Sfs(const Ipp32s * pSrcl, const Ipp32s * pSrc2,
Ipp32s * pDst, int len, int scaleFactor);

Description

Multiplies the elements of two vectors. Results in a third vector.

pDst[k] = pSrc1[k] x pSrc2[k], k=0, 1, ..., len- 1.

Multiplies the elements of two vectors with output scaling. Results in a third vector.
pDst[k] = ( pSrcl[K] x pSrc2[k] ) x 2~-ScaleFactor y —qg 1 |en-1.

Input Arguments

® pSrcl - pointer to the vector to be multiplied

® pSrc2 - pointer to the vector to multiply

® len - length of the input and output vector

* scaleFactor - scaling factor. — range:[-31,31]

Output Arguments
pDst — pointer to the output vector
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Returns

®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments. Returned for any of the following conditions:
— apointer was NULL
— one or more vectors was 0 in length.
— scaleFactor was outside the range of -31 to 31

Sub_32sc

Prototype

IppStatus ippsSub_32sc(const Ipp32sc * pSrcl, const lpp32sc * pSrc2,
Ipp32sc * pDst, int len);

IppStatus ippsSub_32sc_Sfs(const Ipp32sc * pSrcl, const Ipp32sc * pSrc2,
Ipp32sc * pDst, int len, int scaleFactor);

Description

Subtracts the elements of two vectors. Results in a third vector.

pDst[Kk].re = pSrc2[k].re - pSrcl[K].re,

pDst[k].im = pSrc2[k].im - pSrc1[K].im

wherek=0,1, ..., len-1.

Subtracts the elements of two vectors with output scaling. Results in a third vector.
pDst[k].re = ( pSrc2[k].re - pSrc1[K].re ) x 2-ScaleFactor

pDst[k].im = ( pSrc2[K].im - pSrc1[k].im ) x 2-ScaleFactor

wherek=0,1, ..., len- 1.

Input Arguments

® pSrcl - pointer to the subtrahend, i.e., the vector to be subtracted from the minuend

® pSrc2 - pointer to the minuend, i.e., the vector from which the subtrahend will be subtracted
® len - length of the input and output vector

* scaleFactor - scaling factor — range:[-31,31]
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Output Arguments
pDst — pointer to output vector

Returns

®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments. Returned for any of the following conditions:
— apointer was NULL
— one or more vectors was 0 in length.
— scaleFactor was outside the range of -31 to 31

Sub_32s
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Prototype

IppStatus ippsSub_32s(const 1pp32s * pSrcl, const Ipp32s * pSrc2, Ipp32s
* pDst, int len);

IppStatus ippsSub_32s Sfs(const Ipp32s * pSrcl, const Ipp32s * pSrc2,
Ipp32s * pDst, int len, int scaleFactor);

Description

Subtracts the elements of two vectors. Results in a third vector.

pDst[k] = pSrc2[k] - pSrcl[k], k=0, 1, ..., len- 1.

Subtracts the elements of two vectors with output scaling. Results in a third vector.
pDst[k] = ( pSrc2[K] - pSrcl[K] ) x 2-ScaleFactor - 1 fen- 1.

Input Arguments

® pSrcil - pointer to the subtrahend, i.e., the vector to be subtracted from the minuend

®  pSrc2 - pointer to the minuend, i.e., the vector from which the subtrahend will be subtracted
® len - length of the input and output vector

® scaleFactor - scaling factor. — range:[-31,31]

Output Arguments

®* pDst - pointer to output vector
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Returns

®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments. Returned for any of the following conditions:
— apointer was NULL
— one or more vectors was 0 in length.
— scaleFactor was outside the range of -31 to 31

Sum_32s

Prototype
IppStatus ippsSum_32s (const lpp32s *pSrc, int len, Ipp32s *pDst);

IppStatus ippsSum_32s_Sfs (const Ipp32s *pSrc, int len, Ipp32s *pDst, int
scaleFactor);

Description
Vector sum — this function computes the sum of the elements of the input vector

pDst = pSrc[0]+pSrc[1]+...+ pSrc[len-1]

Input Arguments
® pSrc - pointer to the input vector
® len - number of elements contained in the input vector (0 < Ien < 65536)

® scaleFactor - saturation fixed scale factor (scaled primitives only)
(-32 < scaleFactor < 32)

Output Arguments
pDst — pointer to the output

Returns

®  ippStsNoErr —no error

®  ippStsNullPtrErr —pSrcor pDstis NULL

® ippStsLengthErr —illegal value for len

® ippStsRangeErr — scaleFactor is out of range
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Usage Examples of Vector Math for 32-Bit Data

Usage of 32-bit Addition Functions
Below is an example to add two vectors with length of 100 and store the result in a third vector:
#include <stdio.h>
#include “ippdefs._h”
#include “ippSP.h”

int mainQ

{
Ipp32s x[100], y[100], z[100];

int i1;

/* Initialize x and y vector */

for (1 =0; 1 <100; i ++) {
x[1] = y[i] = 1;

}

/* Add y vector to x vector and store result in z vector*/
ippsAdd_32s(x, y, z, 100);

/* print out the output */
for (1 =0; 1 <100; i ++) {
printf(“%6d”, z[i]);
if ( (+1)% == 0 ) {
printf(*\n>);
}
}

return(0);
}

Usage of 32-bit Subtraction Functions
Below is an example to subtract a vector from another vector with length of 100 and store the
result in a third vector:

#include <stdio.h>
#include “ippdefs._h”
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#include “ippSP.h~

int mainQ

{
Ipp32s x[100], y[100], z[100];

int i;

/* Initialize x and y vector */

for( 1 = 0; 1 < 100; 1 ++ ){
x[i] = y[i] = 1;

}

/* Subtract y vector from x vector and store result in z vector*/
ippsSub_32s(x, y, z, 100);

/* print out the output */
for (1 =0; 1 <100; i ++ ) {
printf(“%6d”, z[i]);
if ( (+1D)% == 0 ) {
printf(*\n”);
}
}

return(0);
3

Usage of 32-bit Multiplication Functions
Below is an example to multiply two vectors with length of 100 and store the result in a third
vector:

#include <stdio.h>
#include “ippdefs._h”
#include “ippSP.h”

int mainQ

{
Ipp32s x[100], y[100], z[100];
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int i;

/* Initialize x and y vector */

i ++ ) {

/* Multiply y vector to x vector and store result in z vector*/
ippsMul_32s(x, y, z, 100);

/* print out the output */
for (i =0; 1 <100; i ++) {
printf(“%6d”, z[i]);
it C (G+D)%5 == 0 ) {
printf(*\n”);

}
}
return(0);
}
Vector Thresholding

Vector sorting is useful in statistical applications where the median of a vector is desired. Vector
sorting may also be useful in some signal processing applications. For example, see [Tan00].

Threshold GT 16s

Prototype

IppStatus ippsThreshold_GT_16s(const lppl6s * pSrc, lppl6és * pDst, int
len, Ippl6s threshold);

IppStatus ippsThreshold _GT_16s 1(lppl6s * pSrcDst, int len, lppl6s
threshold);
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Description

Vector GT threshold — compares each element of a vector against a threshold, then replaces
supra—threshold elements with the value of the variable thresh. That is:

pDst[i] = { thresh, pSrc[i]>threshold O<i<len

pSrc[i], otherwise

Input Arguments

®  pSrc, pSrcDst - pointer to the vector to which the threshold is applied
® threshold - threshold value

® len-number of elements contained in the input and output vectors

Output Arguments
pDst, pSrcDst — pointer to the thresholded output vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Threshold LT 16s

Prototype

IppStatus ippsThreshold_ LT _16s(const lppl6és * pSrc, lppl6és * pDst, int
len, Ippl6s threshold);

IppStatus ippsThreshold LT _16s_ 1(lppl6s * pSrcDst, int len, Ippl6s
threshold);

Description

Vector LT threshold — compares each element of a vector against a threshold, then replaces
sub—threshold elements with the value of the variable thresh. That is:

pDst[i] = { thresh, pSrcl[i]<threshold 0<i<len

pSrc[i], otherwise
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Input Arguments

®  pSrc, pSrcDst - pointer to the vector to which the threshold is applied
® threshold - threshold value

® len-number of elements contained in the input and output vectors

Output Arguments
pDst, pSrcDst — pointer to the thresholded output vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Threshold GTVal 16s
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Prototype

IppStatus ippsThreshold_GTVal_16s(const lppl6s * pSrc, lppl6s * pDst, int
len, Ippl6s threshold, Ippl6s val);

IppStatus ippsThreshold_GTval_16s_1(lppl6s * pSrcDst, int len, lppl6s
threshold, Ippl6s val);

Description

Vector GT threshold with value replacement — compares each element of a vector against a
threshold, then replaces supra-threshold elements with the value of the variable val. That is:

pDst[i] = { val, pSrc[i]>threshold O<i<len

pSrc[i], otherwise

Input Arguments

®  pSrc, pSrcDst - pointer to the vector to which the threshold is applied
® threshold - threshold value

* val - supra—threshold replacement value

®* len - number of elements contained in the input and output vectors
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Output Arguments
® pDst, pSrcDst - pointer to the thresholded output vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Threshold LTVal 16s

Prototype

IppStatus ippsThreshold_LTVal_16s(const lppl6s * pSrc, Ippl6s * pDst, int
len, Ippl6s threshold, Ippl6s val);

IppStatus ippsThreshold_LTval_16s 1(lppl6s * pSrcDst, int len, lppl6s
threshold, Ippl6s val);

Description

Vector LT threshold with value replacement — compares each element of a vector against a
threshold, then replaces sub-threshold elements with the value of the variable val. That is:

pDst[i] = { val, pSrcl[i]<threshold 0<i<len

pSrc[i], otherwise

Input Arguments

® pSrc, pSrcDst - pointer to the vector to which the threshold is applied
® threshold - threshold value

* val - sub-threshold replacement value

® len-number of elements contained in the input and output vectors

Output Arguments
pDst, pSrcDst — pointer to the thresholded output vector

Returns
®  ippStsNoErr —no error
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® ippStsBadArgErr — bad arguments

Threshold LTValGTVal_16s
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Prototype

IppStatus IppsThreshold_LTvalGTval_16s (const lppl6s * pSrc, lppl6s *
pDst, int len, lIppl6s gtThreshold, lIppl6s gtval, lppl6és ItThreshold,
Ippl6s Itval);

IppStatus IppsThreshold_LTvalGTVval_16s_I (lppl6s * pSrcDst, int len,
Ippl6s gtThreshold, lppl6s gtval, lppl6s ItThreshold, Ippl6s Itval);

Description

Vector GTLT threshold with value replacement — compares each element of a vector against upper
and lower bounds (gtThreshold and ItThreshold, respectively). Replaces elements below the
lower bound with the value of the variable 1'tval, and replaces elements above the upper bound
with the value of the variable gtval.

gtVval, pSrcl[i]>gtThreshold
pDst[i] =< ytval, pSrc[i]<ItThreshold O<i<len
pSrc[i], otherwise

Input Arguments

® pSrc, pSrcDst — pointer to the vector to which the thresholds are applied

® len - number of elements contained in the input and output vectors

® gtThreshold - upper bound. gtThreshold must be greater than 1tThreshold

® ItThreshold - lower bound

® Itval - sub-threshold replacement value (replaces elements below ItThreshold)

* gtVval - supra—threshold replacement value (replaces elements above gtThreshold)

Output Arguments
pSrc, pSrcDst — pointer to the output vector
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Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad argument

Threshold LT 32s

Prototype

IppStatus ippsThreshold LT _32s (const 1pp32s *pSrc, lpp32s *pDst,
int len, Ipp32s threshold);

IppStatus ippsThreshold LT _32s 1 (Ipp32s *pSrcDst, int len, lpp32s
threshold);

Description

Vector LT threshold — compares each element of a vector to a threshold, then replaces
sub-threshold elements with the value of the threshold variable.

threshold, pSrc[i] < threshold

i ) 0<i<len
pSrcli], otherwise

pDst[i] :{

Input Arguments

®  pSrc, SrcDst — pointer to the vector to which the threshold is applied

® len - number of elements contained in the input and output vectors (0 < Ien < 65536)
® threshold - threshold value

Output Arguments
pDst, pSrcDst — pointer to the threshold output vector

Returns

®  ippStsNoErr —no error

®  ippStsNul IPtrErr — pSrc, pSrcDst, or pDst is NULL
® ippStsLengthErr —illegal value for len
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Vector Thresholding Usage Examples

Example 2-7 illustrates the usage of the ippsThreshold_GT_16s_I primitive. The elements of a
100-element vector are compared against a threshold value. Elements larger than threshold are
replaced by the threshold value.

Example 2-7 ippsThreshold_GT_16s
#include <stdio.h>
#include "ippdefs.h"
#include "ippSP.h"
int mainQ
{
Ippl6s x[100];
int 1;
ippl6s threshold = 50;
/* Initialize x and y vector */
for (1 =0; 1 <100; 1 ++ ) {
x[i] = i1;
}
/* Threshold the vector x */
ippsThreshold_GT_16s_I1(x, 100, threshold);
/* print out the output */
for (1 =0; 1 <100; 1 ++ ) {
printf("%6d™, x[i]);
continued
if ( (G+D)% == 0 ) {
printf(''\n"");
}
}
return(0);
}
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Vector Statistics

Statistical vector primitives are available that perform a number of common operations, including
min, max, mean, standard deviation, biased autocorrelation, unbiased autocorrelation, and
cross—correlation. The details for all of these primitives are given next. The “default” function
behavior and arguments are described for each primitive. Scaled and in—place primitive variables
can be understood easily by applying the behavioral rules given in Chapter 1.

Max_16s

Prototype
IppStatus ippsMax_16s(const lIppl6és * pSrc, int len, lppl6és * pResult);

Description
Vector maximum — examines all vector elements and returns the largest (signed). That is:

*pResult = max{pSrc[i]}, 0<i<len

Input Arguments
® pSrc - pointer to the vector of data within which the largest element is identified
®* len-number of elements contained in the input vector

Output Arguments
pResult — pointer to the value of the largest element contained in the input vector

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments
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Min_16s

Prototype
IppStatus ippsMin_16s(const lppl6és * pSrc, int len, Ippl6és * pResult);

Description
Vector minimum — examines all vector elements and returns the smallest (signed). That is:

*pResult = min{pSrc[i]}, 0<i<len-1

Input Arguments
® pSrc - pointer to the vector of data within which the smallest element is identified
® len-number of elements contained in the input vector

Output Arguments
pResult — pointer to the value of the smallest element contained in the input vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Mean_16s

Prototype
IppStatus ippsMean_l6s(const Ippl6s * pSrc, int len, lppl6s * pResult);
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Description
Vector arithmetic mean — computes the arithmetic mean of a data vector. That is:

len-1

*pResult = Fln' z pSrc[k]

k=0

Input Arguments
® pSrc - pointer to the vector of data for which the arithmetic mean is computed
® len-number of elements contained in the vector

Output Arguments
pResult — pointer to the arithmetic mean of the data contained in the input vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

StdDev_16s

Prototype
IppStatus ippsStdDev_16s(const lppl6és * pSrc, int len, Ippl6s * pResult);

IppStatus ippsStdDev_16s_Sfs(const Ippl6s * pSrc, int len, Ippl6s *
pResult, int scaleFactor);

Description
Vector standard deviation — computes the standard deviation of a data vector. That is:

len-1 2
* pResult = kZO (pSrcl[k])” /len
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Input Arguments

® pSrc - pointer to the vector of data for which the standard deviation is computed
® len-number of elements contained in the vector

* scalefactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pResult — pointer to the standard deviation of the data contained in the input vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

AutoCorr_16s

Prototype

IppStatus ippsAutoCorr_16s(const lIppl6és * pSrc, int srcLen, Ippl6s *
pDst, int dstLen);

IppStatus ippsAutoCorr_16s_Sfs(const lppl6és * pSrc, int srcLen, lppl6s *
pDst, int dstLen, int scaleFactor);

Description
Sample autocorrelation — computes a sample autocorrelation for a vector of data. That is:

srcLen-1
pDst[n] = Z pSrc[k]x pSrc[k+n] 0<n<dstLen pSrc[k]=0 if kx>srclLen

k=0
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Input Arguments

®  pSrc - pointer to the vector of data for which the sample autocorrelation is computed
® srcLen - number of elements contained in the vector of data

® dstLen —number of autocorrelation lags to estimate

* scalefactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pDst — pointer to the sample autocorrelation sequence

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

AutoCorr_NormA 16s

Prototype

IppStatus ippsAutoCorr_NormA_16s(const Ippl6s * pSrc, int srclLen, lppl6s
* pDst, int dstlLen);

IppStatus ippsAutoCorr_NormA_16s_Sfs(const lppl6és * pSrc, int srclLen,
Ippl6és * pDst, int dstLen, int scaleFactor);

Description

Biased autocorrelation — forms a biased estimate of the autocorrelation sequence associated with a
data vector. That is:

srcLen-1
1
<
sroten > psrclklxpSrclk+n]  0<n<dstLen
pDst[n] = Poo
0 srcLen<n<dstLen

pSrc(k) = 0 if k>srcLen
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E NOTE. The quality of the autocorrelation estimate will improve as the number

_ of samples in the data vector increases relative to the number of lags computed.
In fact, the biased autocorrelation estimate will become asymptotically
unbiased as the number of elements in the vector becomes arbitrarily large. As
a rule, the number of points contained in the data vector should be at least ten
times the number of desired autocorrelation lags. That is, for computation of 10
lags, the data vector should contain at least 100 samples.

Input Arguments

® pSrc - pointer to the vector of data for which the biased autocorrelation sequence is
estimated

® srclLen —number of elements contained in the vector of data

® dstLen - number of autocorrelation lags to estimate (typically dstLen«srclLen —see
Note)

* scaleFactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pDst — pointer to the biased estimate of the autocorrelation sequence

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

AutoCorr_ NormB_16s

Prototype

IppStatus ippsAutoCorr_NormB_16s(const Ippl6s *pSrc, int srcLen, Ippl6s
*pDst, int dstLen);

IppStatus ippsAutoCorr_NormB_16s_Sfs(const lppl6s *pSrc, int srclLen,
Ippl6s *pDst, int dstLen, int scaleFactor);
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Description

Unbiased autocorrelation — forms an unbiased estimate of the autocorrelation sequence associated
with a data vector. That is:

srcLen-1
[—1 J E pSrc(k) x pSrc[k +n] 0<n<dstLen
(srcLen-n)
pDst[n] = ~
k=0
0 srcLen<n<dstLen

pSrc(k) =0 if k>srcLen

Input Arguments

® pSrc - pointer to the vector of data for which the unbiased autocorrelation sequence is
estimated

® srclLen —number of elements contained in the vector of data

® dstLen —number of autocorrelation lags to estimate (typically dstLen «srcLen —see
Note under “AutoCorr_NormA_16s")

* scalefactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pDst — pointer to the unbiased estimate of the autocorrelation sequence

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

CrossCorr_16s

Prototype

IppStatus ippsCrossCorr_16s(const Ippl6s * pSrcl, int srclLen, const
Ippl6s * pSrc2, int src2lLen, lppl6és * pDst, int dstLen, int lowLag);
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2-56

IppStatus ippsCrossCorr_16s_Sfs(const Ippl6és * pSrcl, int srclLen, const
Ippl6és * pSrc2, int src2Len, Ippl6s * pDst, int dstLen, int lowlLag,
int scaleFactor);

Description
Estimates a set of cross—correlation lags for two vectors. That is:

srclLen-1
pDst[n] = z pSrcl[k]-pSrc2[k+n+ lowLag]
k=0 0<n<dstLen

pSrc2[k]=0 if k>=src2Len

Input Arguments

®  pSrcil, pSrc2 - pointers to the vectors of data for which the cross correlation lags are
estimated

® srcllen, src2Len —number of elements contained in the vectors for which the cross
correlation lags are estimated

® dstLen —number of cross correlation lags to compute

®* lowLag - lowest cross correlation lag to compute; the primitive computes the set of cross
correlation lags, t, such that lowLag <t < lowLag +DstLen

* scalefactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pDst — pointer to the estimated cross correlation sequence

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
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Vector Statistics Usage Examples

Example 2-8 illustrates the usage of the ippsMean_16s primitive.

Example 2-8 ippsMean_16s

#include <stdio.h>
#include "ippdefs._h"
#include "ippSP.h"

int main(Q)

{
Ippl6és x[100], result;
int i;

/* Initialize x */

for (1 =0; i1 <100; 1 ++) {
x[i] = i;

}

/* Calculate the mean value of vector x */
ippsMean_16s(x, 100, &result);

/* print out the output */
printf("%6d", result);

return(0);
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Example 2-9 illustrates the usage of the ippsAutoCorr_16s_Sfs primitive.

Example 2-9 ippsAutoCorr_16s

#include <stdio.h>
#include "ippdefs.h"
#include "ippSP.h"
#define srcLen 10
#define dstLen 10

#define factor 2

int mainQ)

{
Ippl6s src[srcLen];
Ippl6s dst[dstLen];

int i;

for (1 =0; 1 <srcLen; 1 ++ ) {
src[i] = (i - srcLen/2) * 1000;

}

/* calculate the autocorrelation */
ippsAutoCorr_16s_Sfs(src, srcLen, dst, dstLen, factor);

for (1 =0; 1 <dstLen; 1 ++ ) {
printf(*"%6d"”, dst[i]);
if (i1 '=028&8 i% ==0) {
printf(''\n");
}
}

return(0);
}
#undef srclLen
#undef dstlLen
#undef factor
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Vector Measure

Primitives are available to compute several of the most common vector measures, including the
L,, L,,and L norms. For each primitive, both absolute and differencing versions are available.
The details for these primitives are given next. The “default” function behavior and arguments are
described for each primitive. The scaled primitive variables can be understood easily by applying
the behavioral rules given in Chapter 1.

NormDiff L1 _16s32s

Prototype

IppStatus ippsNormDiff_L1 16s32s(const lIppl6s * pSrcl, const lppl6s *
pSrc2, int len, Ipp32s * pResult);

IppStatus ippsNormDiff_L1 16s32s_Sfs(const lppl6s * pSrcl, const Ippl6s *
pSrc2, int len, Ipp32s * pResult, int scaleFactor);

Description
VectorL, difference — computes theL, measure of difference between two vectors. That is:

len-1
*pResult = z IpSrci[k]-pSrc2[k]|

k=0

Input Arguments

® pSrcl, pSrc2 - pointers to the input vectors for the difference calculation
® len - number of samples contained in the input vectors

* scalefactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pResult — pointer to the result of the difference calculation

Returns
®  ippStsNoErr —no error
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® ippStsBadArgErr — bad arguments

NormDiff L2 16s32s

2-60

Prototype

IppStatus ippsNormDiff_L2_ 16s32s(const lIppl6és * pSrcl, const lppl6s *
pSrc2, int len, Ipp32s * pResult);

IppStatus ippsNormDiff_L2 16s32s_Sfs(const lppl6s * pSrcl, const Ippl6s *
pSrc2, int len, Ipp32s * pResult, int scaleFactor);

Description
VectorL, difference — computes theL, measure of difference between two vectors. That is:

len-1 1/2
*pResult = Z IpSrci[k]-pSrc2[k]|2

k=0

Input Arguments

® pSrcl, pSrc2 — pointers to the input vectors for the difference calculation
® len - number of samples contained in the input vectors

® scalefactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pResult — pointer to the result of the difference calculation

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments
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NormDiff Inf 16s32s

Prototype

IppStatus ippsNormDiff_Inf_16s32s(const lppl6s * pSrcl, const lppl6s *
pSrc2, int len, Ipp32s * pResult);

IppStatus ippsNormDiff_Inf_16s32s_Sfs(const lppl6és * pSrcl, const lppl6s
* pSrc2, int len, Ipp32s * pResult, int scaleFactor);

Description
VectorL, difference — computes theL , measure of difference between two vectors. That is:

*pResult = MaX  (|psrci[k]-pSrc2[k])

0<k<len

Input Arguments

® pSrcl, pSrc2 - pointers to the input vectors for the difference calculation
® len-number of samples contained in the input vectors

® scalefactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pResult — pointer to the result of the difference calculation

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments
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Norm_L1 16s32s

Prototype

IppStatus ippsNorm L1 16s32s(const lppl6s * pSrc, int len, Ipp32s *
pResult);

IppStatus ippsNorm L1 16s32s_Sfs(const Ippl6s * pSrc, int len, lpp32s *
pResult, int scaleFactor);

Description
VectorL, norm —computes the L, norm of a vector. That is:

len-1

*pResult = z IpSrc(k)|

k=0

Input Arguments

® pSrc - pointer to the input vector for the norm computation

® Ien-number of samples contained in the input vector

* scalefactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pResult — pointer to the value of the L, norm for the input vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
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Norm_L2 16s32s

Prototype

IppStatus ippsNorm L2 16s32s(const lppl6s * pSrc, int len, Ipp32s *
pResult);

IppStatus ippsNorm L2 16s32s_Sfs(const Ippl6s * pSrc, int len, lpp32s *
pResult, int scaleFactor);

Description
VectorL, norm — computes the L, norm of a vector. That is:

len-1 1/2
*pResult = [ z IpSrc(k)Iz]

k=0

Input Arguments

®  pSrc - pointer to the input vector for the norm computation

® len-number of samples contained in the input vector

* scalefactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pResult — pointer to the value of the L, norm for the input vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
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Norm_Inf 16s32s

Prototype

IppStatus ippsNorm_Inf_16s32s(const lppl6s * pSrc, int len, Ipp32s *
pResult);

IppStatus ippsNorm_Inf_16s32s_Sfs(const lppl6és * pSrc, int len, lpp32s *
pResult, int scaleFactor);

Description
VectorL,, norm — computes theL . norm of a vector. That is:

* — max
pResult = <k IenIpSrc(k)l
Input Arguments
® pSrc - pointer to the input vector for the norm computation
® len-number of samples contained in the input vector
® scaleFactor - saturation fixed scalefactor (scaled primitive only)

Output Arguments
pResult - pointer to the value of the L norm for the input vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
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Sampling Primitives

UpSampleSize
UpSample 16s
DownSampleSize
DownSample 16s

Prototype

IppStatus, ippsUpSampleSize(int srcLen, int sampleFactor, int phase, int
* pDstLen);

IppStatus ippsUpSample_16s(const Ippl6és * pSrc, int srcLen, int *
pSrcDstPhase, lIppl6s * pDst, int sampleFactor);

IppStatus ippsDownSampleSize(int srcLen, int sampleFactor, int phase, int
* pDstLen;

IppStatus ippsDownSample_16s(const lppl6s * pSrc, int srcLen, int *
pSrcDstPhase, Ippl6és * pDst, int sampleFactor);

Description

®  (Calculate the length of the up-sample output signal.

® Increase the target signal's sampling rate.

Calculate the length of the down-sample output signal.
®  Decrease the target signal's sampling rate.

Input Arguments
® pSrc - pointer to the input vector, whose sampling rate will be changed.
® srcLen - the length of the input vector.

® phase - the parameter, which determine the relative position of the input vector and the
output vector.

®* pSrcDstPhase — pointer to the parameter, which determine the relative position of the input
vector and output vector.

* sampleFactor - sample factor, which indicates the relationship between the old frequency
and the new one.
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Output Arguments

* pDst - pointer to the output vector, which is the result of up-sampling.

®* pDstLen — pointer to the length of the result vector.

® pSrcDstPhase — pointer to the updated parameter, which contains phase information.

Returns
®* IPP_STATUS_OK —no error
® IPP_STATUS_BAD_ARG — bad arguments
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Signal Generation

This chapter describes the Intel® Integrated Performance Primitives (Intel® IPP) on Intel® PCA
Processors with Intel® Wireless MMX ™ Technology (PCA processors with MMX ™) that are
available for generating sinusoidal, triangular, and pseudo-random sequences of samples.

For several signal generator types, Intel® IPP offers both initialized and direct versions. Direct
signal generators require only a single call to the library in order to obtain a desired sequence of
samples. On the other hand, at the expense of two additional initialization function calls,
initialized signal generators offer the benefit of improved execution efficiency over the direct
versions. While they are functionally identical from an input/output point of view, the initialized
and direct functions offer the user an opportunity to trade initialization overhead library calls for
improved speed of execution.

In the interest of simplicity and consistency, the mathematical expressions given in this chapter to
describe the behavior of each function generator represent the particular case of the non-in-place
and non-scaled function variable (the so-called “default” function version). The user should be
aware that the behavior of any scaled and/or in-place variables can be understood easily by
applying to the default behavioral specification the generic in-place and scaled function behavioral
rules that are given in Chapter 1. Moreover, several of the function generators described in this
chapter make use of the Qm.n integer fixed-point representation of floating point function
parameters. Complete details on the Qm.n format are given in Chapter 1.

The rest of this chapter is organized as follows. First, deterministic signal generators are described.
Sections “Sinusoidal Signals” and “Triangular Signals”, respectively, are concerned with the
sinusoidal and triangular signal generators. Then, pseudo-random signal generation is addressed.
Sections “Uniformly Distributed Pseudo-Random Signals” and “Normally Distributed
Pseudo-Random Signals”, respectively, provide details on the random signal generators that
synthesize output sequences for which samples are selected from uniform and Gaussian
distributions. Finally, section “Signal Generation Usage Examples” provides example 'C' language
source listings that demonstrate the usage of the Intel® IPP signal generators.
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Sinusoidal Signals

3-2

This section describes the primitives available for generation of sinusoids, including both the
initialized and direct variables. While the initialized and direct primitive variables are functionally
identical from an input/output point of view, the initialized generator internally achieves increased
execution efficiency relative to the direct primitive, by exploiting an iterative computational
technique. The increased efficiency, however, comes at the expense of two overhead function calls
into the library during initialization time. On the other hand, the direct version offers a simplified
API that consists of only a single call into the library. By employing a computational scheme
based on linear interpolation, however, the direct variable incurs a slight performance penalty.

For both the initialized and direct function variables, the behavior of the sinusoidal signal
generation primitive is described in terms of the magnitude, frequency, and phase parameters, i.e.,

s(n) = magQ15- cos(2n - FreqQ15- n + phaseQ15)

where the parameter magQ15 specifies the magnitude (Q15), the parameter FreqQ1t specifies the
sinusoidal frequency normalized by the sample frequency (Q15), the parameter phaseQ15
specifies the phase, and the parameter n represents the integer index of discrete time (sample
index).

Both the initialized and direct usage models are straightforward. The direct primitive requires a
single call to the primitive with a complete set of parameters. The direct primitive returns a vector
of sinusoidal samples synthesized according to the input parameters. On the other hand, for the
initialized primitive, the user must allocate, initialize, maintain, and ultimately free an external
state variable. Therefore, the initialized generator requires the combined use of three primitives. In
particular, the application code making use of an initialized sinusoidal signal generation primitive
must perform the following sequence of operations:

1. Call the primitive ippsToneGetStateSizeQl5_ 16s()for API alignment to determine the
number of bytes required for the state variable structure 1ppToneState_16s.

2. Invoke the memory allocation procedure(s) appropriate for the particular target operating
system (OS) to request a buffer of the size returned by the size function in step 1, and then set
the signal generation state buffer pointer such that it references the newly allocated block of
memory.

3. Call the primitive ippsTonelnitQ15_16s() to configure the newly allocated state buffer
with the desired synthesis parameters.

4. Call the primitive ippsToneQ15_16s() to synthesize the desired sequence of output
samples.

5. Free the memory allocated to the state buffer once signal synthesis has been completed and
the state variable is no longer required.
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Complete details for both the initialized and direct variables of the sinusoidal synthesis primitives
are given next. In addition, example 'C' language source listings are given at the end of the chapter
that demonstrate the usage of signal generation primitives.

ToneGetStateSizeQ15 16s

Prototype
IppStatus ippsToneGetStateSizeQl5 16s(int * pToneStateSize);

Description

Initialized tone generator state variable size — computes the size, in bytes, of the structure
IppToneState_16s.

Input Arguments
None

Output Arguments

pToneStateSize — pointer to an integer that indicates the size of the structure
IppToneState_16s

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

TonelnitQ15 16s

Prototype

IppStatus ippsTonelnitQl5_16s(lIppToneState 16s * pToneState, lppl6s
magQl5, Ippl6s freqQl5, Ipp32s phaseQl5);
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Description

Given a set of sinusoidal parameters (magnitude, frequency, and phase), initializes the state
variable structure IppToneState_16s.

Input Arguments

®*  magQ15 — desired peak sinusoidal magnitude, in Q0.15 format. The value must be
non-negative, i.e., 0 <magQ15 < 32768 . For Q0.15 in conjunction with the underlying type
Ipp16s, this constraint corresponds to a peak magnitude range of 0 < peak magnitude<1,
and an output signal amplitude range of -1 <amplitude<1 .

* freqQ15 - desired sinusoidal frequency, ¥, normalized by the sample frequency, £,
represented in Q0.15 format. In order to satisfy the Nyquist criterion for a sampled sinusoid, it
is required that 0 < freqQ15 < 16383 . For Q0.15 in conjunction with the underlying type
Ippl6s, this constraint corresponds to a range for the normalized digital frequency, o, of
0<0<n radians, where 6 = 2nf/f.

®* phaseQ15 — desired unwrapped sinusoidal phase in Q16.15 format, with the value
constrained such that 0 < phaseQ15 < 205886. For Q16.15 (Q15 in conjunction with the
underlying type 1pp32s), this corresponds to a range for the unwrapped phase, ¢, of
0< ¢ < 2n radians.

® pToneState — pointer to the uninitialized state variable structure 1ppToneState_16s

Output Arguments
pToneState — pointer to the initialized state variable structure IppToneState_16s

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

ToneQ15 16s

34

Prototype

IppStatus ippsToneQl5 16s(lppl6s * pDst, int len, IppToneState_16s *
pToneState);
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Description

Initialized version of the sinusoidal sequence generator — synthesizes a sequence of sinusoidal
samples in accordance with the parameters given in the IppToneState_16s state variable
structure.

Input Arguments
® pToneState — pointer to the initialized state variable structure IppToneState_16s
® len - number of sinusoidal samples to synthesize in the output vector

Output Arguments

pDst — Pointer to the vector that contains the sinusoidal output sequence. Given the Q15
representation of the sinusoidal synthesis parameters, for the amplitude range 0 < magQ15 < 32768 ,
the corresponding output amplitudes will be in the range -32767 < pDst[i]< 32768 .

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

ToneQ15 Direct_16s

Prototype

IppStatus ippsToneQl5 Direct_16s(lppl6s * pDst, int len, Ippl6s magQl5,
Ippl6s freqQl5, Ipp32s phaseQl5);

Description

Synthesizes a sequence of sinusoidal samples directly given a set of desired sinusoidal parameters
(magnitude, frequency, and phase).

Input Arguments
®* len - number of sinusoidal samples to synthesize in the output vector
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®* magQ15 — desired peak sinusoidal magnitude, in Q0.15 format. The value must be
non-negative, i.e., 0 <magQ15 < 32768 . For Q15 in conjunction with the underlying type
Ippl6s, this constraint corresponds to a peak magnitude range of 0 < peak amplitude<1,
and an output signal amplitude range of -1 <amplitude<1.

* freqQ15 — desired sinusoidal frequency, ¥, normalized by the sample frequency, f,
represented in Q0.15 format. In order to satisfy the Nyquist criterion for a sampled sinusoid, it
is required that 0 < FreqQ15 < 16383 . For Q15 in conjunction with the underlying type
Ippl6s, this constraint corresponds to a range for a normalized digital frequency, o, of
0<6<n radians, where 6 = 2nf/f.

® phaseQ15 — desired unwrapped sinusoidal phase in Q16.15 format, with the value
constrained such that 0 < phaseQ15 < 205887 . For Q16.15 (Q15 in conjunction with the
underlying type 1pp32s), this corresponds to a range for the unwrapped phase, ¢, of
0< ¢ <2n radians.

Output Arguments
pDst — pointer to the vector that contains the sinusoidal output sequence

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Triangular Signals

3-6

This section describes the primitives available for generation of triangular sequences, including
both the initialized and direct variables. While the initialized and direct primitive variables are
functionally identical from an input/output point of view, the initialized generator internally
achieves increased execution efficiency relative to the direct primitive by exploiting an iterative
computational technique. The increased efficiency, however, comes at the expense of two
overhead function calls into the library during initialization time. On the other hand, the direct
version offers a simplified API that consists of only a single call into the library. By employing a
computational scheme based on linear interpolation, however, the direct variable incurs a slight
performance penalty.

For both the initialized and direct function variables, the triangular signal generation primitive
behavior is defined in terms of a parametric, periodic triangular kernel, i.e.,

pDst[i] = magQ15-T,(6(i)), i =0,1,...,1len-1

where the kernel is defined as
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oy -E(e(i)-gj, 0<6(i)<h
) -
ZR{h(e(i)—@), h<0(i)<2n

the parameter magQ15 specifies the magnitude (Q15), the parameter i represents the integer index
of discrete time (sample index), and the asymmetry, h, is given in terms of the Q0.15 parameter
asymQ15 as follows

h = asymQl5+r

Periodic extension of the triangular kernel is controlled by the 2= -periodic sequence,
8(1),defined as

0(1) = o(i)-2nK

where the Q0.15 parameters freqQ15 and phaseQ15, respectively, control fundamental
frequency and phase, i.e.,

o(l) = 2n-freqQ15- i + phaseQ15

and the integer K, defined as

<[

forces a periodicity on the sequence 6(i). Here, the operation | ° ] denotes rounding towards zero.
While the foregoing expressions describe in detail the behavior of the triangular primitive, the API
is straightforward, and requires only that the user specify the triangular sequence in terms of the
magnitude, frequency, phase, and asymmetry parameters. Valid ranges for each of the parameters
are given below under the detailed function descriptions.

As far as usage models are concerned, the direct primitive requires a single call into the library
with a complete set of parameters. The direct primitive returns a vector of triangular samples
synthesized according to the input parameters. On the other hand, for the initialized primitive, the
user must allocate, initialize, maintain, and ultimately free an external state variable. Therefore,
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the initialized generator requires the combined use of three primitives. In particular, the
application code making use of an initialized triangular signal generation primitive must perform
the following sequence of operations:

1. Call the primitive ippsTriangleGetStateSizeQ15_16s()for APl alignment to
determine the number of bytes required for the state variable structure
IppTriangleState_16s.

2. Invoke the memory allocation procedure(s) appropriate for the particular target operating
system (OS) to request a buffer of the size returned by the size function in step 1, and then set
the signal generation state buffer pointer such that it references the newly allocated block of
memory.

3. Call the primitive ippsTrianglelnitQ15_16s() to configure the newly allocated state
buffer with the desired synthesis parameters.

4. Call the primitive ippsTriangleQ15_16s() to synthesize the desired sequence of output
samples.

5. Free the memory allocated to the state buffer once signal synthesis has been completed and
the state variable is no longer required.

Complete details for both the initialized and direct variables of the triangular synthesis primitives
are given next. In addition, example 'C' language source listings are given at the end of the chapter
that demonstrate the usage of signal generation primitives.

TriangleGetStateSizeQ15_16s

3-8

Prototype
IppStatus ippsTriangleGetStateSizeQl5_16s(int * pTriangleStateSize);

Description

Triangular generator state variable size for the initialized version of the primitive — computes the
size, in bytes, of the structure IppTriangleState_16s

Input Arguments
none
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Output Arguments

pTriangleStateSize — pointer to an integer that indicates the size of the state variable structure
IppTriangleState_16s

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

TriangleInitQ15_16s

Prototype

IppStatus ippsTrianglelnitQl5_16s(lppTriangleState_16s * pTriangleState,
Ippl6és magQl5, Ippl6s freqQl5, 1pp32s phaseQl5, Ipp32s asymQl5);

Description

Given a set of triangular sequence parameters (magnitude, fundamental frequency, phase, and
asymmetry), initializes the state variable structure IppTriangleState_16s.

Input Arguments

*  magQ15 —desired peak magnitude, in Q0.15 format. The value must be non-negative, i.e.,
0<magQ15 < 32768 . For Q15 in conjunction with the underlying type Ipp16s, this constraint
corresponds to a peak magnitude range of 0<peak magnitude<1 ,and an output signal
amplitude range of -1 <amplitude<1

* freqQ15 —desired fundamental frequency, £, for the triangular sequence, normalized by the
sample frequency, £, and represented in Q0.15 format. In order to satisfy the Nyquist
criterion, it is required that 0 < freqQ15 < 16384 . For Q15 in conjunction with the underlying
type 1ppl6s, this constraint corresponds to a range for the normalized fundamental digital
frequency, 0,, of 0<0, <= radians, where 6, = 2nf,/f,.

®* phaseQ15 — desired phase in Q16.15 format, with the value constrained such that

0 < phaseQ15 < 205886 . For Q16.15 (Q15 in conjunction with the underlying type 1pp32s),
this corresponds to a range for the phase, ¢, of 0<¢ <2n radians.
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® asymQ15 — asymmetry coefficient in Q16.15 format, with the value constrained such that
-102943 < asymQ15 < 102943. For Q16.15 (Q15 in conjunction with the underlying type
1pp32s), this corresponds to a range on the internal asymmetry parameter, h ,of -t <h <,
radians.

* pTriangleState - pointer to the uninitialized state variable structure
IppTriangleState_16s

Output Arguments
pTriangleState — pointer to the initialized state variable structure IppTriangleState_16s

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

TriangleQ15 16s

3-10

Prototype

IppStatus ippsTriangleQl5_16s(lppl6s * pDst, int len,
IppTriangleState_16s * pTriangleState);

Description

Initialized version of the triangular sequence generator — synthesizes a sequence of triangular
samples in accordance with the parameters given in the IppTriangleState_16s state variable
structure.

Input Arguments

* pTriangleState — pointer to the initialized state variable structure
IppTriangleState_16s

® len-number of triangular samples to synthesize in the output vector

Output Arguments

pDst — pointer to the vector that contains the triangular output sequence. Given the Q15
representation of the triangular synthesis parameters, for the magnitude range 0 < magQ15 < 32768 ,
the corresponding output amplitudes will be in the range —-32767 < pDst[i] < 32768 .
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Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

TriangleQ15 Direct 16s

Prototype

IppStatus ippsTriangleQl5 Direct_16s(lppl6s * pDst, int len, Ippl6s
magQl5, Ippl6s freqQl5, Ipp32s phaseQl5, Ipp32s asymQl5);

Description

Direct version of the triangular sequence generator — synthesizes a sequence of triangular samples
directly given a set of synthesis parameters (magnitude, fundamental frequency, and phase).

Input Arguments
® len - the number of samples to generate

®*  magQ15 — desired peak magnitude, in Q0.15 format. The value must be non-negative, i.e.,

0 <magQ15 < 32768 . For Q15 in conjunction with the underlying type 1pp16s, this constraint
corresponds to a peak magnitude range of 0 < peak magnitude <1, and an output signal
amplitude range of -1 <amplitude<1.

* freqQ15 - desired fundamental frequency, f,, for the triangular sequence, normalized by
the sample frequency, f, and represented in Q0.15 format. In order to satisfy the Nyquist
criterion, it is required that 0 < freqQ15 < 16383 . For Q15 in conjunction with the underlying
type 1ppl6s, this constraint corresponds to a range for the normalized fundamental digital
frequency, 6,, of 0<6,<2n radians, where 6, = 2nf,/f,.

® phaseQ15 — desired phase in Q16.15 format, with the value constrained such that
0 < phaseQ15 < 205886. For Q16.15 (Q15 in conjunction with the underlying type 1pp32s),
this corresponds to a range for the phase, ¢, of 0< ¢ <2x radians.

® asymQ15 — asymmetry coefficient in Q16.15 format, with the value constrained such that
-102943 < asymQ15 < 102943. For Q16.15 (Q15 in conjunction with the underlying type
1pp32s), this corresponds to a range on the internal asymmetry parameter, h, of -x<h<n,
radians.
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Output Arguments

pDst — Pointer to the vector that contains the triangular output sequence. Given the Q15
representation of the sinusoidal synthesis parameters, for the magnitude range 0 <magQ15 < 32768,
the corresponding output amplitudes will be in the range —32767 < pDst[i] < 32768 .

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

Uniformly Distributed Pseudo-Random Signals

This section describes the set of three primitives that comprises a uniformly distributed
pseudo-random sequence generator. The output samples are chosen from a uniform distribution
(i.e., all possible sample values occur with equal likelihood) on the interval [low, high-17,
where Tow and high are primitive parameters. The samples of the pseudo-random number
sequence are determined by the generator state, which can be controlled using the seed
parameter. This means that particular sequences are repeatable.

The generator operates with an “initialized” usage model similar to the initialized sinusoidal and
triangular function generators. The user must allocate, initialize, maintain, and ultimately free an
external state variable. In particular, the application code must perform the following sequence of
operations:

1. Call the primitive ippsRanduniformGetSize_16s() to determine the number of bytes
required for the state variable structure 1ppRanduniformState_16s.

2. Invoke the memory allocation procedure(s) appropriate for the particular target operating
system (OS) to request a buffer of the size returned by the size function in step 1, and then set
the signal generation state buffer pointer such that it references the newly allocated block of
memory.

3. Call the primitive ippsRandUniforminit_16s() to configure the newly allocated state
buffer with the desired synthesis parameters.

4. Call the primitive ippsRandUniform_16s() to synthesize the desired sequence of output
samples.

5. Free the memory allocated to the state buffer once signal synthesis has been completed and
the state variable is no longer required.

Complete details for the uniform random generator are given next. Example 'C' language source
listings are given in the “Signal Generation Usage Examples” section.
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RandUniformGetSize 16s

Prototype
IppStatus ippsRandUniformGetSize_16s(int * pRandUniformStateSize);

Description

Uniform sequence generator state variable size — computes the size, in bytes, of the state variable
structure IppRandUniformState_16s.

Input Arguments
none

Output Arguments

pRandUniformStateSize — pointer to an integer that indicates the size of the structure
IppRandUniformState_16s

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

RandUniformlInit 16s

Prototype

IppStatus ippsRandUniforminit_16s(lppRandUniformState_16s *
pRandUniformState, Ippl6s low, lppl6s high, Ippl6s seed);
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Description

Uniform sequence generator configuration — initializes the state variable structure
ippsRanduniformState_16s such that a call to the generator primitive will synthesize a
pseudo-random sequence starting from the state specified by the seed value and characterized by
the specified distribution boundaries.

Input Arguments

* seed - pseudo-random sequence seed value; places generator into a known state.

® low - lower bound of the interval from which to select the uniformly distributed samples

® high - upper bound+1 of the interval from which to select the uniformly distributed samples

®*  pRandUniformState — pointer to the uninitialized state variable structure
IppRandUniformState_16s

Output Arguments

pRandUniformState — pointer to the initialized state variable structure
IppRandUniformState_16s

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

RandUniform_16s

3-14

Prototype

IppStatus ippsRandUniform_16s(lppl6s * pDst, int len,
IppRandUniformState_16s * pRandUniformState);

Description

Uniform sequence generator — synthesizes a pseudo-random sequence, the samples of which are
chosen from a uniform distribution on the interval [1ow, high-1]. The initial generator state is
controlled by value of the parameter seed.
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Input Arguments
® len - the number of samples to generate

®* pRandUniformState — pointer to the initialized state variable structure
IppRandUniformState_16s

Output Arguments
pDst — pointer to a vector that contains the pseudo-random output sequence

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

Normally Distributed Pseudo-Random Signals

This section describes the set of three primitives that comprises a normally distributed
pseudo-random sequence generator. In general, the probability density function (pdf), p(x.,
associated with a Gaussian random variable, x, is given by

Le—(X—H)Z/ZGZ
CNPE:

where the parameters p and o, respectively, represent the mean and variance of the distribution.
For the primitives described in this section, the output samples are chosen from a Gaussian
distribution with a mean of mean and variance of stdbev?, where mean and stdDev are
primitive parameters. The sample values of the pseudo-random number sequence are determined
by the generator state, which can be controlled using the seed parameter. This means that
particular sequences are repeatable.

p(x) =

The generator operates with an “initialized” usage model similar to the initialized sinusoidal and
triangular function generators. The user must allocate, initialize, maintain, and ultimately free an
external state variable. In particular, the application code must perform the following sequence of
operations:

1. Call the primitive ippsRandGaussGetSize_16s() to determine the number of bytes
required for the state variable structure IppRandGaussState_16s.

2. Invoke the memory allocation procedure(s) appropriate for the particular target operating
system (OS) to request a buffer of the size returned by the size function in step 1, and then set
the signal generation state buffer pointer such that it references the newly allocated block of
memory.

3. Call the primitive ippsRandGaussInit_16s() to configure the newly allocated state
buffer with the desired synthesis parameters.
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4. Call the primitive ippsRandGauss_16s() to synthesize the desired sequence of output
samples.

5. Free the memory allocated to the state buffer once signal synthesis has been completed and
the state variable is no longer required.

Complete details for the uniform random generator are given next. Example 'C' language source
listings are given at the end of the chapter that demonstrate the usage of signal generation
primitives.

RandGaussGetSize 16s

Prototype
IppStatus ippsRandGaussGetSize 16s(int * pRandGaussStateSize);

Description

Gaussian sequence generator state variable size — computes the size, in bytes, of the state variable
structure IppRandGaussState_16s.

Input Arguments
None

Output Arguments

pRandGaussStateSize — pointer to an integer that indicates the size of the structure
IppRandGaussState_16s

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
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RandGaussInit_16s

Prototype

IppStatus ippsRandGaussinit_16s(lppRandGaussState_16s * pRandGaussState,
Ippl6és mean, lppl6s stdDev, Ipp32u seed);

Description

Gaussian sequence generator configuration — initializes the state variable structure
ippsRandGaussState_16s such that a call to the generator primitive will synthesize a
pseudo-random sequence starting from the state specified by the seed value and characterized by
the specified distribution parameters.

Input Arguments

* seed - pseudo-random sequence seed value; places generator into a known state
®* mean - arithmetic mean of the Gaussian output sequence

® stdDev - standard deviation of the Gaussian output sequence

® pRandGaussState — pointer to the uninitialized state variable structure
IppRandGaussState_16s

Output Arguments

pRandGaussState — pointer to the initialized state variable structure
IppRandGaussState_ 16s

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
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RandGauss _16s

Prototype

IppStatus ippsRandGauss_16s(lppl6s * pDst, int len,
IppRandGaussState_16s * pRandGaussState);

Description

Gaussian sequence generator — synthesizes a pseudo-random sequence, the samples of which are
chosen from a Gaussian distribution having mean and variance, respectively, of mean and
stdDev?. The initial generator state is controlled by value of the parameter seed.

Input Arguments
® len - the number of samples to generate

®* pRandGaussState — pointer to the initialized state variable structure
IppRandGaussState_16s

Output Arguments
pDst — pointer to a vector that contains the pseudo-random output sequence

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Signal Generation Usage Examples

This section provides 'C' language source listings that illustrate the usage of the various signal
generation primitives.

Uniformly Distributed Pseudo-Random Sequence

The source code example below illustrates the usage of the ippsRandUniform_16s primitive. In
the example, a vector containing 1024 samples is synthesized, and its samples are chosen from a
uniform distribution on the semi-open interval [-1, 255).
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The example, although specific to the uniform pseudo-random primitive, also illustrates the
generic calling sequence required for the other initialized signal generation primitives. In
particular, it shows that the application must:

1.

Call the size function (for example, ippsRandUniformGetSize_16s) in order to determine
the number of bytes required for the state variable structure.

Invoke a memory allocation procedure(s) appropriate for the particular target operating
system (OS) to request the number of bytes returned by the size function in step 1, and then
set the signal generation state variable pointer such that it points to the newly allocated block
of memory.

Call the init function (for example, ippsRanduniformlnit_16s) to configure the newly
allocated state variable structure with the desired parameters.

Call the sample generation function (for example, ippsRanduniform_16s) to generate the
desired output signal.

Free the memory allocated to the state variable structure once signal generation has been
completed and the state variable is no longer required.
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Example 3-1 ippsRandUniform_16s Usage

include <stdio.h>
#include <malloc.h>

#include "ippdefs.h"

#include "ippSP.h"

int mainQ)

{

Ippl6s * pDst;

Ippl6s low=-1, high=255;

Ippl6s seed=0;

IppRandUniformState_16s *pRandUniformState;

int RandUniformStateSize;
int i;
pbst = (Ippl6s *)malloc(1024 * sizeof(lppl6s));

/* Calculate the memory size needed */
ippsRandUniformGetSize_16s(&RanduUniformStateSize);

/* Allocate memory for the corresponding structure */
pRandUniformState = (IppRandUniformState_16s *)malloc(RandUniformStateSize);

/* Do structure initializing */
ippsRandUniformlnit_16s(pRandUniformState, low, high,seed);

/* Call sample-generating functions to generate the corresponding samples */
ippsRandUniform_16s(pDst,1024,pRandUniformState);

free(pRandUniformState);
free(pDst);

return(0);
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This chapter describes the Intel® Integrated Performance Primitives (Intel® IPP) that are
concerned with digital filtering. The available filter types include the following:

®  Finite Impulse Response (FIR)

® Infinite Impulse Response (IIR)

* Biquad IIR

® Least Mean Square (LMS) adaptive FIR

In the interest of simplicity and consistency, the mathematical expressions given in this chapter to
describe the behavior of each filter primitive represent the particular case of the non-in-place and
non-scaled variable (the so-called “default” version). The user should be aware that the behavior
of any scaled and/or in-place variables can be understood easily by applying to the default
behavioral specification the generic in-place and scaled function behavioral rules that are given in
Chapter 1. Moreover, several of the filters described in this chapter make use of the Qm.n integer
fixed-point representation of floating-point parameters. Complete details on the Qm.n format are

given in Chapter 1.

The rest of this chapter is organized as follows. First, the “FIR Filters” section describes FIR
filters. Next, the “lIR Filters” section addresses IIR filters. Section “Biquad IR Filters” is on
biguad IIR filters. For each of the FIR, IR, and biquad IIR primitives, both single sample and
block versions are available. The “LMS FIR Adaptive Filter” section describes LMS adaptive FIR
filters. The “Multirate Filters” section describes the resampling filters. Finally, the “Filtering
Usage Examples” section provides example C language source listings that demonstrate the usage

of the Intel® IPP digital filtering primitives.
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FIR Filters

4-2

This section describes the FIR filtering primitives, including both block and single sample
variables. An FIR filter is a discrete-time linear system for which the value of the current output
sample can be determined by computing a weighted sum of the current and past input samples. In
particular, the operation of an FIR filter can be described in terms of the time-domain difference
equation

K

y(m = 3 bx(n-k)

k=0

where x(n) is the input sequence, y(n) is the output sequence, b, are the filter coefficients (aka
“taps™), K is the filter order, and n is the discrete-time (sample) index. The impulse response
associated with this system, h(n), can be obtained by exciting the system with a digital impulse.
For example:

x(n) = &(n) = { 1, n=0
0, otherwise

such that

K

h(n) = Z b, 8(n-k)

k=0

Clearly, the impulse response of the FIR filter is given by the filter taps. By computing the z
transform of the impulse response, it can be easily shown that the system transfer function for the
FIR filter is given by

K
H(z) = % =y bz ™
k=0
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The foregoing expressions describe FIR filter behavior in general. Characteristics unique to the
Intel® IPP FIR primitives are described next. For both the block and single-sample variables, the
floating point filter coefficients, b, , are represented using Q15 parameters. That is:

pTapsQ15(k) = b, - 32768, 0<k<tapslLen

Because the underlying type is 1pp16s, the filter coefficients must be normalized such that

|b <1 prior to the Q0.15 scaling. In addition to Q0.15 coefficient representations, both the block
and single-sample FIR primitives require external state buffers (filter memories). This API
architecture supports sequential filtering of contiguous samples using repeated calls to the FIR
primitives without loss of internal filter state. Transient filter responses are avoided at block or
single-sample boundaries by providing a state initialization mechanism for the filter. If the filter is
initialized at the start of each new block to the state that was reached at the end of the previous
block, then a steady-state filter response is maintained when filtering a long data record on a
block-by-block or even a sample-by-sample basis. Users are responsible for filter memory
management, including allocation, initialization, and, de-allocation. Application code making use
of the FIR primitives should adhere to the following usage model:

1. Initialization: prior to calling the primitive for the first time, invoke the memory allocation
procedure(s) appropriate for the particular target operating system (OS) to request a buffer of
the size 2K + 2 (twice the length of the coefficient vector). Next, set the filter memory pointer,
pDelayLine, such that it references the newly allocated block of memory, and initialize the
contents of the buffer to zeros. Set to zero the delay line index value, pDe layL ine Index.
Finally, load the tap vector, pTapsQ15, with appropriately scaled QO.15 filter coefficients.

2. Filtering: after initialization has been completed and the data to be filtered has been loaded
into the input vector, the application should call the desired primitive:
(ippsFIR_Direct_16s, ippsFIROne_Direct_16s or one of the variables). If contiguous
samples from a long sequence are processed either in blocks or sample-by-sample using
repeated primitive calls, the application should not modify the delay line memory or the delay
line index in between successive calls to the primitive, unless a transient response is desired
in the output. Once filtering has been completed, the user is responsible for de-allocating the
delay line buffer memory.

Complete details for both the single sample and block FIR filtering primitives are given next.
In addition, example 'C' language source listings are given at the end of the chapter that
demonstrate their usage.
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FIR Direct 16s

4-4

IppStatus ippsFIR_Direct_16s(const Ippl6s * pSrc, Ippl6és * pDst, int
sampLen, const Ippl6s * pTapsQl5, int tapsLen, Ippl6s * pDelaylLine,
int * pDelayLinelndex);

IppStatus ippsFIR_Direct_16s_I1(lppl6s * pSrcDst, int sampLen, const
Ippl6és * pTapsQl5, int tapsLen, Ippl6és * pDelaylLine, int *
pDelayLinelndex);

IppStatus ippsFIR_Direct_16s_Sfs(const lIppl6s * pSrc, lppl6s * pDst, int
sampLen, const Ippl6s * pTapsQl5, int tapsLen, Ippl6s * pDelaylLine,
int * pDelayLinelndex, int scaleFactor);

IppStatus ippsFIR_Direct_16s_ISfs(lppl6s * pSrcDst, int sampLen, const
Ippl6és * pTapsQl5, int tapsLen, lppl6s * pDelaylLine, int *
pDelayLinelndex, int scaleFactor);

Description

Block FIR — applies the FIR filter defined by the coefficient vector pTapsQ15 to a vector of input
data.

Input Arguments

® pSrc, pSrcDst — pointer to the vector of input samples to which the filter is applied

® sampLen — the number of samples contained in both the input and output vectors

®* pTapsQ15 — pointer to the vector that contains the filter coefficients, represented in Q0.15
format (see Chapter 1). Given that -32768 < pTapsQ15(k) < 32768, 0<k<tapsLen, the
range on the actual filter coefficients is -1 <b, <1, and therefore coefficient normalization
may be required during the filter design process.

® tapsLen —the number of taps, or, equivalently, the filter order + 1

® pDelayLine —pointer to the 2-tapsLen -element filter memory buffer (state). The user is
responsible for allocation, initialization, and de-allocation. The filter memory elements are
initialized to zero in most applications.

® pDelayLinelndex — pointer to the filter memory index that is maintained internally by the
primitive. The user should initialize the value of this index to zero.

* scaleFactor - saturation fixed scalefactor (only for the scaled primitive)
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Output Arguments
pDst, pSrcDst — pointer to the vector of filtered output samples

Returns
ippStsNoErr —no error
ippStsBadArgErr — bad arguments

FIROne Direct 16s

Prototype

IppStatus ippsFIROne_Direct_16s(lppl6s val, lppl6és * pResult, const
Ippl6és * pTapsQl5, int tapsLen, lppl6s * pDelaylLine, int *
pDelayLinelndex);

IppStatus ippsFIROne Direct_16s_I1(lppl6s * pvValResult, const lppl6s *
pTapsQl5, int tapsLen, lIppl6s * pDelayLine, int * pDelayLinelndex);

IppStatus ippsFIROne_Direct 16s_Sfs(lppl6s val, Ippl6s * pResult, const
Ippl6és * pTapsQl5, int tapsLen, lppl6s * pDelaylLine, int *
pDelayLinelndex, int scaleFactor);

IppStatus ippsFIROne Direct_16s_ISfs(lppl6s * pValResult, const lppl6s *
pTapsQ1l5, int tapsLen, Ippl6s * pDelayLine, int * pDelayLinelndex, int
scaleFactor);

Description

Single-sample FIR — applies the FIR filter defined by the coefficient vector pTapsQ15 to a single
sample of input data.

Input Arguments

® val, pvalResult - the single input sample to which the filter is applied. A pointer is used
for the in-place version.

®* pTapsQ15 - pointer to the vector that contains the filter coefficients, represented in Q0.15
format (see Chapter 1). Given that -32768 < pTapsQ15(k) < 32768, 0<k<tapsLen, the
range on the actual filter coefficients is -1 <b, <1, and therefore coefficient normalization
may be required during the filter design process.

® tapsLen —the number of taps, or, equivalently, the filter order + 1
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®* pDelayLine - pointer to the 2-tapsLen -element filter memory buffer (state). The user is
responsible for allocation, initialization, and de-allocation. The filter memory elements are
initialized to zero in most applications.

* pDelayLinelndex — pointer to the filter memory index that is maintained internally by the
primitive. The user should initialize the value of this index to zero.

® scalefactor - saturation fixed scalefactor (only for the scaled primitive)

Output Arguments
pResult, pvalResult — pointer to the filtered output sample

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

IIR Filters

4-6

This section describes the IIR filtering primitives, including both block and single sample
variables. An IIR filter is a discrete-time linear system for which the value of the current output
sample can be determined by computing a weighted sum of the current input sample, past input
samples, and past output samples. In particular, the operation of an IIR filter can be described in
terms of the time-domain difference equation:

K M

y(n) = z b, x(n-k)- Z a,y(n-m)

k=0 m=1

where x(n) is the input sequence, y(n) is the output sequence, n is the discrete-time (sample)
index, and a,, and b, are the filter coefficients (aka “taps”). The impulse response associated with
this system, h(n), can be obtained by exciting the system with a digital impulse. That is:

x(n) = &(n) = { 1, n=0
0, otherwise

such that
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K M

h(n) = Z b, d(n-K)- Z a,h(n-m)

k=0 m=1

Clearly, the feedback terms cause the impulse response to have an infinite time extent. By
computing the z transform of h(n), it can be shown easily that the system transfer function for
the IR filter is given by

-k

b,z
H(z) = ;Eg = k=0
1+ z a,z "
m=1

The foregoing expressions describe IR filter behavior in general. Characteristics unique to the
Intel® IPP 1IR primitives are described next. For both the block and single-sample variables, the
floating-point filter coefficients b, and a,, are represented in a combined coefficient vector that is
pointed to by the parameter pTaps and is organized as follows:

pTaps pTaps+L+1 pTaps+2L+1
b, | b, b, | |b |sfla |&a | . |a

The combined coefficient vector contains 2L + 2 elements, where L = max{K, M} . Therefore, if
K =M for a particular filter design, the user must pad with zeros the smaller set of coefficients
such that the organization of the combined coefficient vector matches the figure. For example, if
K =2 and M = 3, then the combined coefficient vector would be arranged as follows:

pTaps pTaps+L+1 pTaps+2L+1

|

b, | b, |b, |0 |sf|a,]| a,]| a,

The specific Q-format used to represent the elements of the IR coefficient vector is controlled by
the scaling coefficient denoted in the above figure by s¥. In particular, the actual filter
coefficients are related to the elements of the coefficient vector in the following way
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4-8

and

b, = pTaps(k)- 2T, 0<k<K

a, = pTaps(m+L+2)-25T 0<m<w

where sf = pTaps(L+1),and sf>0.

In addition to the user-controlled coefficient scaling, both the block and single-sample IIR
primitives require external state buffers (filter memories). External memory makes it is possible to
perform sequential filtering of contiguous samples using repeated calls to the IR primitives
without loss of the internal filter state. Thus, a steady-state filter response is maintained when
filtering long data records on a block-by-block or even a sample-by-sample basis by avoiding
transient responses at the block or single-sample boundaries. Users are responsible for filter
memory management, including allocation, initialization, and de-allocation. As a result,
application code making use of the IIR primitives should adhere to the following usage model:

1.

Initialization: prior to calling the primitive for the first time, invoke the memory allocation
procedure(s) appropriate for the particular target operating system (OS) to request a buffer of
size L-1. Next, set the filter memory pointer, pDelayL ine, such that it references the newly
allocated block of memory, and initialize the contents of the buffer to zeros. Finally, load the
tap vector, pTaps, with appropriately scaled filter coefficients.

Filtering: after initialization has been completed and the data to be filtered has been loaded
into the input vector, the application should call the desired primitive:
(ippslIR_Direct_16s, ippslIR_DirectOne_16s, or one of the variables). If contiguous
samples from a long sequence are processed either in blocks or sample-by-sample using
repeated primitive calls, the application should not modify the delay line memory in between
successive calls to the primitive, unless a transient response is desired in the output. Once
filtering has been completed, the user is responsible for de-allocating the delay line buffer
memory.

Complete details for both the single sample and block IIR filtering primitives are given next. In
addition, example 'C' language source listings are given at the end of the chapter that demonstrate
their usage.
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IIR Direct_16s

Prototype

IppStatus ippslIR_Direct_16s(const Ippl6s * pSrc, lppl6s * pDst, int len,
const lppl6és * pTaps, int order, lpp32s * pDelayLine);

IppStatus ippslIR_Direct_16s_I(lppl6s * pSrcDst, int len, const lppl6s *
pTaps, int order, lIpp32s * pDelayLine);
Description

Block IIR — applies the direct form 11 IR filter defined by the coefficient vector pTaps to a vector
of input data. The direct form Il IR filter has the structure shown below, where x and y are,
respectively, the vectors of input and output data. See Figure 4-1.

Figure 4-1 Data Flow Diagram of a Typical IIR Direct Form II Filter

x[n]

Input Arguments
®  pSrc, pSrcDst - pointer to the vector of input samples to which the filter is applied

4-9
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® len - the number of samples contained in both the input and output vectors

® pTaps — pointer to the 2L +2 -element vector that contains the combined numerator and
denominator filter coefficients from the system transfer function, H(z) . Coefficient scaling
and coefficient vector organization should follow the conventions described above. The value
of the coefficient scalefactor exponent must be non-negative ( s> 0).

® order - the maximum of the degrees of the numerator and denominator coefficient
polynomials from the system transfer function, H(z), Thatis: order = max(K,M)-1 = L-1.

* pDelayLine —pointer to the L -element filter memory buffer (state). The user is responsible
for allocation, initialization, and deallocation. The filter memory elements are initialized to
zero in most applications.

Output Arguments
pDst, pSrcDst — pointer to the vector of filtered output samples

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

IIROne_Direct 16s

4-10

IppStatus ippslIROne_Direct_16s(lppl6s val, lppl6és * pResult, const
Ippl6és * pTaps, int order, lpp32s * pDelayLine);

IppStatus ippslIROne_Direct_16s_I1(lppl6és * pValResult, const lppl6s *
pTaps, int order, lIpp32s * pDelayLine);

Description

Single sample IIR — applies the direct form Il IIR filter defined by the coefficient vector pTaps to
a single sample of input data. The direct form Il IIR filter has the structure shown below, where x
and y are, respectively, the input and output samples. See Figure 4-1.

Input Arguments

¢ val, pvalResult —the single input sample to which the filter is applied. A pointer is used
for the in-place version.
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® pTaps — pointer to the 2L + 2 -element vector that contains the combined numerator and
denominator filter coefficients from the system transfer function, H(z) . Coefficient scaling
and coefficient vector organization should follow the conventions described above. The value
of the coefficient scalefactor exponent must be non-negative ( s > 0).

® order - the maximum of the degrees of the numerator and denominator coefficient
polynomials from the system transfer function, H(z). That is:
order = max(K,M)-1 =L-1.

® pDelayLine —pointer to the L -element filter memory buffer (state). The user is responsible
for allocation, intialization, and deallocation. The filter memory elements are initialized to
zero in most applications.

Output Arguments
pResult, pvalResult — pointer to the filtered output sample

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Biquad IIR Filters

IR filters with quantized coefficients are susceptible to stability problems, particularly in
fixed-point systems. Therefore, single IR filters of arbitrary order are often decomposed into
equivalent cascades of 2nd-order IIR sections known as biquads. To implement a general 1IR filter
using a biquad cascade, the filter designer must factor the system transfer function polynomial,
H(z), into a cascade of 2nd-order rational polynomials. Although the biquad cascade is

4-11
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Figure 4-2

analytically identical to the single filter of higher order, the stability of the biquad filter realization
tends to be less sensitive to quantization errors. Intel® IPP biquad 11R primitives are implemented

using the direct form Il cascade structure shown in Figure 4-2.

Direct Form Il Cascade Structure

Figure 4-3

Direct-Formll Filter
x[n] —L> Order = 2
Biquad 1

Direct-Formll Filter
Order =2 —-..

Biquad 2

Direct-Formll Filter

Order =2 ——> y[n]
Biquad n

A8852-01

Each of the biquad stages shown in Figure 4-2 implements a direct form 11 1IR section that
conforms to the behavioral description given in the “lIR Filters” section for general IR filters, and
therefore the notation used throughout the remainder of this section is the same as the notation
used in the “IIR Filters” section. For both the block and single-sample variables, the floating point
filter coefficients b, and a,, for all of the biquad stages are represented in a combined coefficient
vector that is pointed to by the parameter pTaps and is organized as follows:

Combined Coefficient Vector Organization

4-12

ijps pTaps+3 pTaps+6 pTaps+9 pTafs+6 (P-1)
b, | b, |b, |sfy|a [a& |b,| b,|b,|sf, a al-|b |b|b [sfa |a
L Biquad 1 f1 Biquad ZJ [ Biquad P—T

The combined coefficient vector contains 6P elements, where P is the number of biquad stages in
the cascade structure. As with the coefficient vector for the standard IIR primitive, if K=M for

any constituent filter, then the user must pad with zeros the smaller set of coefficients such that the
organization of the combined coefficient vector matches the figure. The specific Q-format used to
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represent the elements of the p*" biquad section is controlled by the scaling coefficient denoted in
the above figure by sf,, 1<p<P, where sf >0. In particular, the actual filter coefficients for
the p*" biquad section are related to the elements of the coefficient vector in the following way

sfP

b, = pTaps(6(p-1)+k)-2 ", 0<ksK,

and

sfP

a, = pTaps(G(p—1)+m+4)-2_ , OSmsMp

where sf, = pTaps(6(p-1) +3, K, is the order of the pth biquad numerator polynomial, and
M, is the order of the pt" biquad denominator polynomial.

In addition to the user-controlled coefficient scaling, both the block and single-sample biquad 1IR
primitives require external state buffers (filter memories). External memory makes it is possible to
perform sequential filtering of contiguous samples using repeated calls to the biquad IR
primitives without loss of the internal filter state. Thus, a steady-state filter response is maintained
when filtering long data records on a block-by-block or even a sample-by-sample basis by
avoiding transient responses at the block or single-sample boundaries. Users are responsible for
filter memory management, including allocation, initialization, and de-allocation. As a result,
application code making use of the biquad IIR primitives should adhere to the following usage
model:

1. Initialization: prior to calling the primitive for the first time, invoke the memory allocation
procedure(s) appropriate for the particular target operating system (OS) to request a buffer of
size 2P, where P is the number of biquad sections. Next, set the filter memory pointer,
pDelayLine, such that it references the newly allocated block of memory, and initialize the
contents of the buffer to zeros. Finally, load the tap vector, pTaps, with appropriately scaled
filter coefficients.

2. Filtering: after initialization has been completed and the data to be filtered has been loaded
into the input vector, the application should call the desired primitive:
(ippsIIR_BiQuadDirect_16s, ippslIROne_BiQuadDirect_16s, or one of the
variables). If contiguous samples from a long sequence are processed either in blocks or
sample-by-sample using repeated primitive calls, the application should not modify the delay
line memory in between successive calls to the primitive, unless a transient response is
desired in the output. Once filtering has been completed, the user is responsible for
de-allocating the delay line buffer memory.

Complete details for both the single sample and block biquad IIR filtering primitives are given
next. In addition, example 'C' language source listings are given at the end of the chapter that
demonstrate their usage.
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IIR_BiQuadDirect 16s

4-14

Prototype

IppStatus ippslIR_BiQuadDirect_16s(const lppl6s * pSrc, lppl6és * pDst,
int len, const lppl6s * pTaps, int numBiquad, Ipp32s * pDelayLine);

IppStatus ippslIR_BiQuadDirect_16s_I(lppl6s * pSrcDst, int len, const
Ippl6és * pTaps, int numBiquad, Ipp32s * pDelayLine);

Description

Block biquad IR applies the direct form Il biquad IIR cascade defined by the coefficient vector
pTaps to a vector of input data.

Input Arguments
®  pSrc, pSrcDst - pointer to the vector of input samples to which the filter is applied
® len - the number of samples contained in both the input and output vectors

® pTaps - pointertothe 6P -element vector that contains the combined numerator and
denominator filter coefficients from the biquad cascade. Coefficient scaling and coefficient
vector organization should follow the conventions described above. The value of the
coefficient scalefactor exponent must be non-negative. ( sf,>0.).

* numBiquad — the number of biquads contained in the 1R filter cascade: ( P)

® pDelayLine - pointer to the 2P -element filter memory buffer (state). The user is
responsible for allocation, intialization, and de-allocation. The filter memory elements are
initialized to zero in most applications.

Output Arguments
pDst, pSrcDst — pointer to the vector of filtered output samples

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments
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IIROne_BiQuad_16s

Prototype

IppStatus ippslIROne_BiQuadDirect _16s(lppl6s val, lppl6s * pResult,
const Ippl6s * pTaps, int numBiquad, Ipp32s * pDelayLine);

IppStatus ippslIROne_BiQuadDirect_16s_I1(lppl6és * pValResult, const
Ippl6és * pTaps, int numBiquad, Ipp32s * pDelayLine);

Description

Single-sample biquad IIR — applies the direct form Il biquad IIR cascade defined by the
coefficient vector pTaps to a single sample of input data.

Input Arguments

* val, pvalResult - the single input sample to which the filter is applied. A pointer is used
for the in-place version.

®* pTaps — pointer to the 6P -element vector that contains the combined numerator and
denominator filter coefficients from the biquad cascade. Coefficient scaling and coefficient
vector organization should follow the conventions described above. The value of the
coefficient scalefactor exponent must be non-negative: (s, >0 ).

®* numBiquad — the number of biquads contained in the IIR filter cascade: (P)

® pDelayLine - pointer to the 2P -element filter memory buffer (state). The user is
responsible for allocation, intialization, and deallocation. The filter memory elements are
initialized to zero in most applications.

Output Arguments
pResult, pvalResult — pointer to the filtered output sample

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

4-15
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LMS FIR Adaptive Filter

4-16

This section describes the Least-Mean-Square (LMS) FIR adaptive filter primitives. The FIR
adaptive filter is a time-varying linear system for which the taps are adjusted to minimize a
measure of the error between the actual output and some desired output. The iterative LMS
algorithm minimizes the error sequence in the mean square sense by updating the taps for each
new sample that enters the process such that the error is changed in the direction of the negative
gradient. During the k™" iteration, the output of the FIR filter, y(n), is described in terms of the
usual time-domain difference equation, i.e,

M
y(n) = Z By (m)x(n—m)

m=0

where x(n) is the input sequence, y(n) is the output sequence, b, (m) is the k™" estimate of the
desired taps, M is the filter order, and n is the discrete-time (sample) index. Given a desired
output, d(n), the error sequence on the k™" iteration is therefore defined as

M
e(n) = d(n)- Z b (m)x(n —m)
m=0
For a properly chosen adaptation gain, u, it can be shown that the expected value of the squared

error, E{e“(n)}, converges to the minimum mean square bound when the taps, b, (m) ,are updated
using the LMS gradient algorithm. That is:

b, 0] [b(0)] ()
b (D |be(D) x(n-1)
by, 1(2)| = |by(2)| ~21€(M)|x(n-2)

_bk;.l.(M)_ _bI;.(.M)_ X(n—M)

The gradient is estimated in terms of the error and the input data. The adaptation gain (or step size)
parameter, u , controls the rate of adaptation. The adaptation gain must be chosen to achieve a
reasonable trade-off between rate of convergence and steady-state error.

The foregoing expressions describe LMS FIR adaptive filter behavior in general. For the Intel®
IPP LMS adaptive FIR primitives, the floating point filter coefficients, b, (m), are represented
using Q0.15 parameters. That is:
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pTapsQ15(m) = b, (m)-32768, 0<m<tapsLen

as is the adaptation gain, u . That is:

stepQ15 = p- 32768

To maximize dynamic range, both the taps and the step size are represented in terms of Q0.15 in
conjunction with the underlying type 1pp32s: (Q16.15). In addition, external state buffers (filter
memories) are required. Users are responsible for filter memory management, including
allocation, initialization, and de-allocation. Application code making use of the LMS adaptive FIR
primitives should adhere to the following usage model:

1. Initialization: prior to calling the primitive for the first time, invoke the memory allocation
procedure(s) appropriate for the particular target operating system (OS) to request a buffer of
the size 2- tapsLen = 2M+2. Next, set the filter memory pointer, pDe layL ine, such that it
references the newly allocated block of memory, and initialize the contents of the buffer to
zeros. Finally, set to zero the delay line index value, pDe layL inelndex.

2. Filtering and LMS adaptation: after initialization has been completed and the desired inputs
and outputs have been selected, the application should call ippsFIRLMSOne_Direct_16s
or ippsFIRLMSOne_DirectOne_16s for each iteration of the LMS adaptation. The user
should update the input and desired output on each iteration, but should not modify either the
delay line memory or the delay line index. Once filtering and adaptation have been
completed, the user is responsible for de-allocating the delay line buffer memory.

Complete details for both of the LMS adaptive FIR filtering primitives are given next. In addition,
example 'C' language source listings are given at the end of the chapter that demonstrate their
usage.

FIRLMSOne Direct 16s

Prototype

IppStatus ippsFIRLMSOne Direct_16s(lppl6s val, lIppl6s valDesire, lppl6s
* pResult, lpp32s * pTapsQl5, int tapsLen, Ipp32s stepQl5, lIppl6s *
pDelayLine, int * pDelayLinelndex);

IppStatus ippsFIRLMSOne Direct_16s_I1(lppl6s * pValResult, lppl6s
valDesire, Ipp32s * pTapsQl5, int tapsLen, Ipp32s stepQl5, Ippl6s *
pDelayLine, int * pDelayLinelndex);
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Description

Adapts FIR filter coefficients using one iteration of the classical LMS algorithm; processes a
single input sample, updates the taps, and generates a single output sample.

Input Arguments

val, pvalResult — the single input sample to which the filter is applied. A pointer is used
for the in-place version.

valDesire — desired output in response to the given input

pTapsQ15 — pointer to the vector that contains the estimate of the desired filter coefficients
obtained during the most recent LMS iteration (b, (m), 0<m<M). The coefficients are
represented in Q16.15 format (see Chapter 1). Prior to the first LMS iteration, the taps could
be initialized either to a seed value or to zero. In some cases, the rate of convergence can be
improved by initializing the coefficients with an approximation to the desired coefficients
rather than a vector of zeros.

tapsLen —the number of taps to be updated by the LMS algorithm, or, equivalently, the filter
order +1

stepQ15 — the adaptation gain, p, represented in Q16.15 format (see Chapter 1). To achieve
steady-state convergence, the gain should be greater than 0.

pDelayLine — pointer to the 2 - tapsLen -element filter memory buffer. The user is
responsible for allocation, initialization, and deallocation. The filter memory elements should
be initialized to zero prior to the start of an LMS adaptation cycle.

pDelayLinelndex — pointer to the filter memory index that is maintained internally by the
primitive. The user should initialize the value of this index to zero. The most recent sample
contained in the filter memory is addressed by pDe layL ine+(*pDelayLinelndex).

Output Arguments

pResult, pvalResult — pointer to the actual output that is generated in response to the
current input

pTapsQ15 — pointer to the vector that contains the updated filter coefficients

( by ,,(m), 0<m<M), represented in Q16.15 format (see Chapter 1).

Returns

ippStsNoErr — no error
ippStsBadArgErr — bad arguments
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Multirate Filters

ResampleFIRInit 16s

Prototype

IppStatus ippsResampleFIRInit_16s(int srcLen, int * pDstLen, int
*pDelayLineLen, lIppl6s * pSrcDstTaps, int tapsLen, int upFactor, int
downFactor);

Description

Calculate the size of the output buffer and the delay line working buffer and rearrange the input
tap.

Input Arguments

® srcLen - the length of the input vector

® pSrcDstTaps — pointer to the array which specifies the filter coefficient(taps) values.
®* tapsLen - the number of taps in the array which contains the filter coefficient(taps)

® upFactor — sample factor of up-sampling, which indicates the relationship between the old
frequency and the new one. The sampling rate of output vector is (upFactor / downFactor)
times of the input vector sampling rate.

® downFactor —sample factor of down-sampling, which indicates the relationship between the
old frequency and the new one. The sampling rate of output vector is (upFactor / downFactor)
times of the input vector sampling rate.

Output Arguments

®* pDstLen — pointer to the buffer size for the result vector

® pDelayLinelLen — pointer to DelayLineLen

® pSrcDstTaps — pointer to the data used by the resample primitive

Returns
® IPP_STATUS_OK - No Error.
* |PP_STATUS BAD_ ARG - Bad Arguments
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The following figure shows the re-sampling relationship of input and output vector.

Source Sequence x (0) x (1) x(2)

upPhase ‘ upFactor ‘
Virtual

Upsampled 0 0 x[0] 0 0 0 x[1] 0 0 0 x[2] 0 0 0
Sequence

downPhase —#= [-— downFactor |

Resampled y (0) y (1) y(2)
Sequence

ResampleFIR 16s_Sfs

Prototype

IppStatus ippsResampleFIR_16s_Sfs(lppl6s *pSrc, int srcLen, Ippl6s
*pDst, int *pDstLen, lppl6s *pTaps, int tapsLen, int upFactor, int
* pUpPhase, int downFactor, int * pDownPhase, Ippl6s *pDelayLine, int
DelayLineLen, int scaleFactor);

Description
Change the target signal's sampling rate to fractional of the original sampling rate

Input Arguments

®  pSrc - pointer to the input vector, whose sampling rate will be changed.

® srcLen - length of the input vector.

® pTaps — pointer to the array which specifies the filter coefficient(taps) values.

* tapsLen - number of taps in the array which contains the filter coefficient(taps)

® upFactor — sample factor of up-sampling, which indicates the relationship between the old
frequency and the new one. The sampling rate of output vector is (upFactor / downFactor)
times of the input vector sampling rate.

® pUpPhase — parameter, which determine the relative position of the input vector and the
output vector.
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® downFactor —sample factor of down-sampling, which indicates the relationship between the
old frequency and the new one. The sampling rate of output vector is (upFactor / downFactor)
times of the input vector sampling rate.

* pDownPhase — parameter, which determine the relative position of the input vector and the
output vector.

® pDelayLineLen — pointer to DelayLineLen
® scaleFactor - value that the output should be scaled.

Output Arguments
®* pDst - pointer to the output vector, which is the result of re-sampling.
® pDstLen — pointer to the length of the result vector

Filtering Usage Examples

FIR

This section provides 'C' language source listings that illustrate the usage of the FIR, IR, biquad
IIR, and LMS adaptive filtering primitives.

The example below illustrates the usage of the scaled FIR filtering primitive,
ippsFIR_Direct_16s_STs. The example code implements a linear-phase, lowpass, 19-th order
FIR filter having the coefficients

b, = {0.08,0.10492407, 0.17699537, 0.28840385, ..., 0.08}
Given that

19
Z Ib,| = 10.34
k=0

the dynamic range on the output, y(n), is -10.34 < y(n) < 10.34, which means that a Q4.11 output
representation is required to avoid saturation in the 16-bit output word. Therefore, the scaled FIR
primitive is used to accommodate the dynamic range on the output with a scalefactor value of 4.
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Example 4-1 ippsFIR_Direct_16s_Sfs Usage

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "ippdefs.h"
#include "ippSP.h"
#define tapsLen 20
#define N 40

#define scaleFactor 4

int mainQ
{
int i;
Ippl6és pSrc[N], pDst[N];
Ipp32s pDelayLine[tapsLen*2];
int delayLinelndex;
Ipplés pTaps[tapsLen];
float b[tapsLen] =
{ 0.080000000, 0.104924069, 0.176995366, 0.288403847, 0.427076676,
0.577986499, 0.724779895, 0.851549523, 0.944557926, 0.993726200,
0.993726200, 0.944557926, 0.851549523, 0.724779895, 0.577986499,
0.427076676, 0.288403847, 0.176995366, 0.104924069, 0.080000000 };

/* scale the filter taps to Q15 */

for (1 =0; i1 < tapsLen; i ++ ) {

b[i] *= (1<<14);

pTaps[i] = (b[i] > 32767)?32767 : b[i];
}

/* random input signal */

srand(200);

for (1 =0; 1 <Nj; i ++)

continued
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Example 4-1 ippsFIR_Direct_16s_Sfs Usage (continued)

pSrc[i] = rand() - 32768/2;

delayLinelndex = 0O;

for (1 =0; i < tapsLen*2; i ++ )

pDelayLine[i] = O;

ippsFIR_Direct_16s_Sfs(pSrc, pDst,N, pTaps, tapsLen, pDelayLine,
&delayLinelndex, scaleFactor);

/* display out signal vector */

for (i =0; i <N; i1 ++){

printf("'%8d", pDst[i]);

iT C (+D)% == 0 ) {
printf(’'\n"");

}

b
return(0);

IIR

The example below illustrates the usage of the ipps11R_Direct_16s primitive.

Example 4-2 ippslIR_Direct_16s Usage

#include <stdio.h>
#include "ippdefs._h"
#include "ippSP.h"
#define tapsLen 4

#define N 40

int mainQ

{
int i;
Ippl6s pSrc[N], pDst[N];

/* here, the scaleFactor is 15 */
Ippl6s pTapslIR[(tapsLen+1)*2] = {

continued
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Example 4-2

ippslIR_Direct_16s Usage (continued)

}

7922, 16348, 22394, 16348, 7922, 15,
6338, 29356, 1841, 4222

}:

Ipp32s pDelayLinel IR[tapsLen];

for (1 =0; i1 < tapsLen; i ++ ) {
pDelayLinel IR[i] = O;
}

printf(""\nTesting <ippslIR_Direct_16s>: \n");
for (i =0; i <N;i++){

pSrc[i] = i;
}

ippslIR_Direct_16s(pSrc, pDst, N, pTapslIR,
tapsLen, pDelayLinellIR);
for (1 =0; 1 <N; i1 ++) {
printf("'%8d", pDst[i]);
ifFCi% ==08&& 1 1=0) {
printf(''\n"™);
}

}
return(0);

#undef N
#undef tapsLen
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Biquad IIR

The example below illustrates the usage of the ipps11ROne_BiQuadDirect_16s_1 primitive.

Example 4-3

ippslIROne_BiquadDirect_16s_| Usage

#include <stdio.h>
#include "ippdefs.h"
#include "ippSP.h"
#define numBiQuad 4
#define N 40

int mainQ

{

int

Ippl6s pValResult;

Ippl6s pTapslIR[numBiQuad*6] = {
3178, 4488, 3178, 14, -922, 1766,
7569, 2155, 7569, 14, -225, 7572,
9458, 513, 9458, 14, 11, 9542,
9895, 159, 9895, 14, 55, 9934

}:
Ipp32s pDelayLinel IR[numBiQuad*2];

for (1 =0; 1 < numBiQuad*2; i1 ++ ) {
pDelayLinel IR[i] = O;
}
printf(""\nTesting <ippslIROne_BiQuadDirect_16s_I>:\n"");
for (1 =0; 1 <N; i1 ++) {
pvValResult = i;
ippslIROne_BiQuadDirect_16s_I1(&pValResult, pTapslIR,
numBiQuad, pDelayLinellR);
printf("%8d", pValResult);

continued
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Example 4-3 ippslIROne_BiquadDirect_16s_| Usage (continued)

ifT (i '=04&&% 1% ==0) {
printf(''\n"");

}
}

return(0);
}
#undef numBiQuad
#undef N

LMS FIR
The example below illustrates the usage of the ippsFIRLMSOne_Direct_16s primitive.

Example 4-4 ippsFIRLMSOne_Direct_16s Usage

#include <stdio.h>
#include "ippdefs.h"
#include "ippSP.h"
#define N 80
#define tapsLen 16

int mainQ

{

int i;

Ippl6ésval, pResult, valDesire;

int pDelayLinelndex;

Ipp32sstepQl5;

Ipp32spTapsLMS[tapsLen];
Ippl6spDelayLine[tapsLen*2];

stepQ15 = 1024; /* 0.03125 in Q16.15 */
valDesire = 100;

for (1 =0; i < tapsLen; i ++ ) {

continued
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Example 4-4 ippsFIRLMSOne_Direct_16s Usage (continued)

pTapsLMSL[i] = O;
}

/* Initialize contents of Delay Line to ZERO */
/* the Tirst time filter is called */
pDelayLinelndex = 0;
for (1 =0; 1 < tapsLen*2; i1 ++ ) {
pDelayLine[i] = O;
}
printf(*"\nTesting <ippsFIRLMSOne_Direct_16s>: \n');
printf(*'Desired value is %d\n', valDesire);
printf(""The calculated value is \n");
for (1 =0; 1 <N; i1 ++) {
val = 100 + i%12;
ippsFIRLMSOne_Direct_16s(val, valDesire, &pResult,
pTapsLMS, tapsLen, stepQl5, pDelayLine, &pDelayLinelndex);

printf(""%8d", pResult);
iT (i 1=0&&% 1% ==4 ) {
printf('\n"");

}
}
return (0);
}
/* EOF */
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Windowing

This chapter describes the Intel® Integrated Performance Primitives (Intel® IPP) that are available
for data windowing. The set of primitives implements the windows that are most popular for
general and multimedia signal processing applications. Available non-parametric windows include
the Bartlett, Hann, Hamming, standard Blackman, and optimal Blackman. Available parametric
windows include Blackman, which provide users with significant flexibility.

In the context of signal processing, windowing denotes the operation in which a predefined or
parametric sequence with a particular set of desirable characteristics is applied via pointwise
vector multiplication to a signal vector. This windowing technique typically improves the
characteristics or performance of some subsequent analysis. In most cases, the idea is to exploit
the duality between time-domain multiplication and frequency-domain convolution. In spectral
analysis applications, for example, tapered windows are most often used to reduce the spectral
leakage associated with the relatively large magnitude sidelobes of non-tapered windows. On the
other hand, non-tapered windows might be used in some cases to improve frequency selectivity at
the expense of increased side lobe energy.

In the interest of simplicity and consistency, the mathematical expressions given in this chapter
that describe the behavior of each window represent the particular case of the non-in-place and
non-scaled function variable (the so-called “default” version). The behavior of any scaled and/or
in-place variable can be understood easily by applying to the default behavioral specification the
generic in-place and scaled function behavioral rules that are given in Chapter 1.

The rest of this chapter is organized as follows. Non-parametric windows are described in the
“Non-Parametric Windows” section, and parametric windows are described in the “Parametric
Windows” section. The “Window Usage Examples” section provides example 'C' language source
listings that demonstrate the usage of the Intel® 1PP windowing primitives.
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Non-Parametric Windows

This section describes the non-parametric windowing primitives, including the Bartlett, Hann,
Hamming, standard Blackman, and optimal Blackman windows. In general, for an N -point
non-parametric window sequence, w(n), and an N -point data vector, v(n), the windowing
operation comprises a pointwise multiply of the window against the input, i.e.,

vy(N) = w(n)-v(n), 0<n<N

where the N -point vector v, (n) is the windowed output sequence. In the particular case of the
Intel® IPP windowing primitives, the user must also be aware of a few other behavioral
characteristics. First, the windowing primitives are computed in-place, such that the primitive
replaces the non-windowed elements of the input vector with the windowed output elements.
Second, the detailed descriptions on each window type give certain restrictions on maximum
window lengths that must be observed. Finally, internal scaling is data-dependent. The primitives
scale the samples of the window sequence such that the magnitude of the peak window element is
set equal to the magnitude of the largest input element. Therefore, in order to maximize precision,
it is recommended that users apply block normalization to the input vector prior to application of
the window, i.e., the input vector should be scaled such that its largest element has a Q15
magnitude on the interval [0.5, 1) . For example, if the N -point input vector v(i) contains elements
of the type Ippl6s, then the input data should be scaled such that

0x4000 <max{|v(i)|} <Ox7FFF, 0<i<N.Complete details on the non-parametric windowing
primitives are given next. In addition, example 'C' language source listings that demonstrate their
usage are given in the “Window Usage Examples” section at the end of this chapter.

WinBartlett 16s I

Prototype
IppStatus ippsWinBartlett_16s_I(lppl6s * pSrcDst, int len);

Description
Applies a Bartlett (triangular) window, w,(n), defined as:

to a Ien-element input vector. Uses automatic internal scaling as described in the
“Non-Parametric Windows” section.

5-2



Windowing 5

2n n<Ien—l
W (n) = len-2 "~~~ 2
A 2n len-1
2- , <n<len-1
len- 2

Input Arguments

® pSrcDst - pointer the vector that contains the non-windowed input data; block
normalization is recommended prior to application of the window (see discussion, the
“Non-Parametric Windows” section)

® len-number of elements contained in the input/output vector, valid range: 2 < 1en < 32768

® scaleFactor - the value that the output should be scaled, must be greater than —16 and less
than -16

Output Arguments
pSrcDst — pointer to the vector that contains the windowed output data

Returns
ippStsNoErr —no error
ippStsBadArgErr — bad arguments

WinHann_16s 1

Prototype
IppStatus ippsWinHann_16s_1(lppl6s * pSrcDst, int len);

Description
Applies a Hann window, wy,,,,(n), defined as
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_ 27N
Wyann(n) = 0.5—0.5003<|en_]) 0<n<len-1

to a Ien-element input vector. Uses automatic internal scaling as described in the
“Non-Parametric Windows” section.

Input Arguments

® pSrcDst - pointer the vector that contains the non-windowed input data; block
normalization is recommended prior to application of the window (see discussion,
“Non-Parametric Windows” section)

® len-number of elements contained in the input/output vector, valid range: 2 < Ien < 32768

® scaleFactor — the value that the output should be scaled, must be greater than —16 and less
than —-16

Output Arguments
® pSrcDst - pointer to the vector that contains the windowed output data

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

WinHamming 16s 1

5-4

Prototype
IppStatus ippsWinHamming_16s_1(lppl6s * pSrcDst, int len);

Description
Applies a Hamming window, wy, ;i ng(n), defined as

Whamming(N) = 0.54-0.46 x COS<%J 0<n<len-1

to a Ien-element input vector. Uses automatic internal scaling as described in the
“Non-Parametric Windows” section.
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Input Arguments

® pSrcDst - pointer the vector that contains the non-windowed input data; block
normalization is recommended prior to application of the window (see discussion,
“Non-Parametric Windows” section)

® len-number of elements contained in the input/output vector, valid range: 2 < len < 32768

Output Arguments
pSrcDst — pointer to the vector that contains the windowed output data

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

WinBlackmanStd _16s_I

Prototype
IppStatus ippsWinBlackmanStd_16s_I(lppl6s * pSrcDst, int len);

Description
Applies a standard Blackman window, wg,,(n), defined as

_ N ) 2nn1) ) (4rm]j <n< _
Wgpk(n) = 042-0.5 cos(—————len_ +0.08 - cos Ten-1 0<n<len-1

to a Ien-element input vector. Uses automatic internal scaling as described in the
“Non-Parametric Windows” section.

Input Arguments

® pSrcDst - pointer the vector that contains the non-windowed input data; block
normalization is recommended prior to application of the window (see discussion,
“Non-Parametric Windows” section)

* len-number of elements contained in the input/output vector, valid range: 2 < 1en < 32768
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Output Arguments
pSrcDst — pointer to the vector that contains the windowed output data

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

WinBlackmanOpt 16s 1

Prototype
IppStatus ippsWinBlackmanOpt_16s_I(l1ppl6s * pSrcDst, int len);

Description
Applies an optimal Blackman window, w,(n), defined as

_alpha+1 (Znnl)_alpha (4nnJ <n< B
Wopt(N) > 0.5 x cos Ton_ 5 oS\ yen 1) 0<n<len-1

to a Ien-element input vector, where the optimal value for the parameter al pha, given by

- 21
sin
len-1
21
len-

alpha = -
sin

is an internal constant. The primitive uses automatic internal scaling as described in the
“Non-Parametric Windows” section.
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Input Arguments

® pSrcDst - pointer the vector that contains the non-windowed input data; block
normalization is recommended prior to application of the window (see discussion,
“Non-Parametric Windows” section)

®* len-number of elements contained in the input/output vector, valid range: 2 < Ien < 32768

Output Arguments
pSrcDst — pointer to the vector that contains the windowed output data

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

Parametric Windows

This section describes the parametric windowing primitives, including Blackman. In general, for
an N -point non-parametric window sequence, w(a, n), and an N -point data vector, v(n), the
windowing operation comprises a pointwise multiply of the window against the input, i.e.,

Vv, (a,n) =w(e,n)-v(n), 0<n<N

where the N -point vector v, (a, n) is the windowed output sequence. In the particular case of the
Intel® IPP windowing primitives, the user must also be aware of a few other behavioral
characteristics. First, the computation is performed in-place, such that the primitive replaces the
non-windowed elements of the input vector with the windowed output elements. Second, the
detailed descriptions on each window type gives certain restrictions on the window parameters as
well as the maximum window lengths that must be observed. Finally, internal scaling is
data-dependent. The primitives scale the samples of the window sequence such that the magnitude
of the peak window element is set equal to the magnitude of the largest input element. Therefore,
in order to maximize precision, it is recommended that users apply block normalization to the
input vector prior to application of the window, i.e., the input vector should be scaled such that its
largest element has a Q15 magnitude on the interval [0.5, 1) . For example, if the N -point input
vector v(i) contains elements of the type 1ppl6s, then the input data should be scaled such that
0x4000 < max{|v(i)|} <Ox7FFF, 0<i <N.Complete details on the parametric windowing
primitives are given next. In addition, example 'C' language source listings that demonstrate their
usage are given in the “Window Usage Examples” section at the end of this chapter.
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WinBlackmanQ15 16s 1

5-8

Prototype

IppStatus ippsWinBlackmanQl5_16s_I(lppl6s * pSrcDst, int len, 1pp32s
alphaQ15);

IppStatus ippsWinBlackmanQl5 16s_ISfs(lppl6s * pSrcDst, int len, lpp32s
alphaQ1l5, int scaleFactor);

Description
Applies a parametric Blackman window, wg(alpha, n), defined as

w(alpha,n):w—Ochos Znn —alphacos Ann , 0<n<len-1
B 2 le 2 len-

to a Ien-element input vector, where the user is able to specify a value for the parameter alpha
via the Q15 parameter alphaQ15, i.e.,

alpha = alphaQ15~2_15

In other words, the parameter al phaQ15 provides a mechanism for representing the floating-point
parameter alpha using an integer data type. Note that the unscaled and in-place primitive
variable uses the automatic internal scaling technique described in section “Non-Parametric
Windows”.

Input Arguments

® pSrcDst - pointer the vector that contains the non-windowed input data; block
normalization is recommended prior to application of the window (see discussion,
“Non-Parametric Windows” section)

® len-number of elements contained in the input/output vector, valid range: 2 < Ien < 32768
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* alphaQ15 — window parameter alpha in Q16.15 format. For Q16.15 (Q15 in conjunction
with the underlying type 1pp32s), this corresponds to a range for the parameter alpha of
-65536 < al pha < 65536 , with a precision of 27%°.

* scaleFactor - saturation fixed scalefactor (only for the scaled primitive)

Output Arguments
pSrcDst — pointer to the vector that contains the windowed output data

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

Window Usage Examples

This section provides 'C' language source listings that illustrate the usage of the windowing
primitives.
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Hamming Window

The example below illustrates the usage of the ippsWinHamming_16s_1 primitive. In the

example, a Hamming window is applied to a signal vector containing 256 elements.

Example 5-1 ippsWinHamming_16s_| Usage

#include <stdio.h>
#include <malloc.h>
#include "ippdefs.h"
#include "ippSP.h"

int mainQ
{
Ipplés * Xx;
int i, len = 256;

/* allocate memory for signal vector */
x = (Ippl6es *)malloc(len * sizeof(lppl6s));
for (1 =0; i <len; i1 ++) {
x[i] = i - (len>>1);
}

/* call windowing primitive */

5-10
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Example 5-1 ippsWinHamming_16s_| Usage (continued)

ippsWinHamming_16s_I1(x, len);

/* output signal */
for (1 =0; i <len; i ++){
printf('%10d", x[i]);
if ( (+D)%6 == 0 ) {
printf(*'\n'");

}
else {
printf(",”);
}
}
free(X);

return( 0 );
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Convolution

This chapter describes discrete convolution functions for the Intel® Integrated Performance
Primitives (Intel® IPP) on the Intel® Integrated Performance Primitives on Intel® PCA Processors
with Intel® Wireless MMX™ Technology (PCA processors with MMX ™). Convolution is the
linear operator that defines the output of a Linear Time-Invariant (LTI) system in response to an
input. In particular, the output of a discrete-time LTI system in response to an arbitrary input
sequence is given by the convolution of the input sequence with the system impulse response
sequence. Intel® IPP offers primitives that perform discrete-time convolution for one-dimensional
(1D) sequences.

In the interest of simplicity and consistency, the mathematical expressions given in this chapter to
describe the behavior of each convolution primitive represent the particular case of the
non-in-place and non-scaled function variable (the so-called “default” function version). The user
should be aware that the behavior of any scaled and/or in-place variables can be understood easily
by applying to the default behavioral specification the generic in-place and scaled function
behavioral rules that are given in Chapter 1.

The remainder of this chapter is organized as follows. The first section, “One-Dimensional (1D)
Convolution” describes the 1D convolution primitives. The last section, “Convolution Usage

Examples” provides example 'C' language source listings that demonstrate the usage of the Intel®
IPP convolution primitives.

One-Dimensional (1D) Convolution

A single primitive is provided for 1D convolution, namely ippsConv_16s. Details for each of
these primitives are given next. The “default” function behavior and arguments are described for
each primitive. Scaled and in-place primitive variables can be understood easily by applying the
behavioral rules given in Chapter 1.
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Conv_16s

Prototype

IppStatus ippsConv_16s(const lppl6s * pSrcl, int srcllLen, const lppl6s *
pSrc2, int src2lLen, lppl6s * pDst);

IppStatus ippsConv_16s_Sfs(const Ippl6s * pSrcl, int srcllLen, const
Ippl6és * pSrc2, int src2Len, lppl6s * pDst, int scaleFactor);

Description

Performs a discrete convolution of two vectors, *pSrcl and *pSrc2, that have, respectively,
srcllen and src2Len elements, i.e.,

k

max
pDst[i] = Z pSrc2[k]-pSrcl[i-Kk], 0<i<srclLen+src2Len-1
k =k

where the lower and upper summation limits, respectively, are obtained from the vector lengths as

follows:
Knin = Max(0, i —srclLen+1)
and
Knax = min(i,src2lLen-1)
% NOTE. If the input vectors contain appropriately arranged coefficients of two
= polynomials, then the convolution is equivalent to polynomial multiplication.

Input Arguments
® pSrcl, pSrc2 - pointers to the input vectors
® srcllLen and src2Len - the number of samples contained in each of the input vectors
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Output Arguments
pDst — pointer to the convolution output vector

Convolution Usage Examples
This section provides 'C' language source listings that illustrate the usage of the 1D convolution
primitive.

One-Dimensional Convolution

The source code example below illustrates the usage of ippsConv_16s primitive.

Example 6-1 ippsConv_16s Usage

#include <stdio.h>
#include j°ippdefs.hjt
#include j°ippdsp.hjz*
#define srclLen 10
#define src2Len 11

int mainQ
{

int

/* variables in 1D convolution */
int dstLen;

Ippl6s pSrcl[srcllLen];

Ippl6s pSrc2[src2lLen];

Ippl6s pDst[srcllLen+src2lLen-1];

continued
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Example 6-1 ippsConv_16s Usage (continued)

/* initialize source array */

for( i = 0; i1 < srcllLen; 1 ++ ) {
pSrcl[i] = i;

}

for( 1 = 0; 1 < src2len; 1 ++ ) {
pSrc2[i] = 1;

/* call 1D convolution */
ippsConv_16s(pSrcl, srcllLen, pSrc2, src2Len, pDst);

/* display result */
printf(j°Test Result \njt);
for (1 = 0; 1 < (srclLent+src2lLen-1); i ++ ) {
printf("%5d", pDst[i]);
if (11=0 && 1%5==0 ) {
printf("'\n");

}
}

return(0);
}

#undef srcllen
#undef src2lLen
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This chapter describes the Intel Integrated Performance Primitives (Intel® IPP) that are available
for computing block transforms. The set of transform primitives includes both forward and inverse
Discrete Fourier Transforms (DFTs) of several radix-2 block lengths. These primitives have been
implemented using Fast Fourier Transform (FFT) algorithms.

In the interest of simplicity and consistency, the mathematical expressions given in this chapter
describe the behavior of each transform.

This chapter is organized as follows:

“EET Functions” provides descriptions of FFT API’s.

“CallBack Functions for Memory Alloc and Free” provides a list of callback functions
that must be implemented.

“Forward FFT Example:”and “Real to Complex FFT Example:” provide example 'C'
language source listings that demonstrate the usage of the Intel® IPP FFT primitives.

FFT Functions

This section describes functions for computing variable-length FFTs, including: Forward and
Inverse FFT for complex-valued sequences ("CToC"). Forward and Inverse FFT for real-valued
input sequences (“RToCCR, CCRToR”)

The FFT functions support radix-2 block lengths of 2N for 0 <= N <= 12. Helper functions are
provided to initialize length-dependent specification structures that are required for each FFT.
Example programs are provided to illustrate calling conventions.
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Special Formats used in FFT

CCS Format

This section describes the CCS format used in FFT transform for real signals. The CCS format
stores the values of the first half of the output complex signal resulted from the forward FFT.

In CCS format, the output samples of the FFT are arranged as shown in Table 7-1. Note that the
signal stored in CCS format is one complex element longer.

Table 7-1 Forward FFT Result Representation in CCS format
FFTReal 0 1 2 3 N-2 N-1 N N+1
CCS Ro 0 Ry L e Rnz1 I Rz 0

Functions' Declaration

FFT Helper Functions

7-2

Specification Initialization of FFT Functions

Function Declarations

IppStatus ippsFFTInitAlloc_C_16sc (IppsFFTSpec_C _16sc **pFFTSpec, int
order, int flag, IppHintAlgorithm hint);

IppStatus ippsFFTInitAlloc_C_32sc (IppsFFTSpec_C 32sc **pFFTSpec, int
order, int flag, IppHintAlgorithm hint);

IppStatus ippsFFTInitAlloc_R_16s32s (lppsFFTSpec_R_16s32s **pFFTSpec,
int order, int flag, IppHintAlgorithm hint);

IppStatus ippsFFTInitAlloc_R_32s (lppsFFTSpec_R_32s **pFFTSpec, int
order, int flag, IppHintAlgorithm hint);

Description

These functions initiate the specification for complex'/real'‘complex FFT, whose maximum length
is 4096, and minimum length is 1.

These functions calls the callback function <ippsMalloc>, and the user is responsible for
implementing it. Please refer to “CallBack Functions for Memory Alloc and Free” for detailed
information.

Input Arguments
order - the base-2 logarithm of the length. Valid data value range is [0,12].
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Flag - reserved argument, only 0 support in current implementation.
hint - reserved argument, only 0 support in current implementation.

Output Arguments

pFFTSpec - pointer to the FFT specification struct pointer the specification is allocated and
initiated in this function.

Return

IPP_STATUS_OK - No Error.

IPP_STATUS_BAD_ARG - Bad Arguments.

If following conditions are not satisfied, this function returns IPP_STATUS_ BAD_ARG.

®  The pointer pFFTSpec is NULL
® order <0 or order > 12

Buffer Size of FFT Functions

Function Declarations

IppStatus ippsFFTGetBufSize C_16sc (const lppsFFTSpec_C_16sc *pFFTSpec,
int *pSize);

IppStatus ippsFFTGetBufSize C _32sc (const lppsFFTSpec_C_32sc *pFFTSpec,
int *pSize);

IppStatus ippsFFTGetBufSize R _16s32s (const lppsFFTSpec_R_16s32s
*pFFTSpec, int *pSize);

IppStatus ippsFFTGetBufSize R_32s (const lppsFFTSpec_R_32s *pFFTSpec, int
*pSize);

Description

These functions get the size of work buffer used by FFT, whose maximum length is 4096, and
minimum length is 1.

Input Arguments
pFFTSpec — pointer to the FFT specification struct.

Output Arguments
pSize — Pointer to the size of the buffer (in bytes).
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Return

IPP_STATUS_OK — No Error.

IPP_STATUS_BAD_ARG — Bad Arguments.

If following conditions are not satisfied, this function returns IPP_STATUS_BAD_ARG.
®  The pointer pFFTSpec or pSize is NULL

Specification Free FFT Functions

Function Declarations

IppStatus ippsFFTFree_C_16sc (const IppsFFTSpec_C_16sc *pFFTSpec);
IppStatus ippsFFTFree_C_32sc (const IppsFFTSpec_C_32sc *pFFTSpec);
IppStatus ippsFFTFree R_16s32s (const IppsFFTSpec R _16s32s *pFFTSpec);
IppStatus ippsFFTFree_R_32s (const lppsFFTSpec_R_32s *pFFTSpec);

Description
These functions free the memory used by FFT specification.

Input Arguments
pFFTSpec — pointer to the FFT specification struct.

Output Arguments
None

Return

IPP_STATUS_OK — No Error.

IPP_STATUS_BAD_ARG — Bad Arguments.

If following conditions are not satisfied, this function returns IPP_STATUS BAD_ARG.
®  The pointer pFFTSpec is NULL

FFT Functions for Complex Signals

Function Declarations

IppStatus ippsFFTFwd_CToC_16sc_Sfs (const Ippl6sc *pSrc, lIppl6sc *pDst,
const lppsFFTSpec_C _16sc *pFFTSpec, int scaleFactor, Ipp8u *pBuffer);

IppStatus ippsFFTFwd_CToC_32sc_Sfs (const Ipp32sc *pSrc, Ipp32sc *pDst,
const IppsFFTSpec_C 32sc *pFFTSpec, int scaleFactor, Ipp8u *pBuffer);
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IppStatus ippsFFTInv_CToC_16sc_Sfs (const lIppl6sc *pSrc, Ippl6ésc *pDst,
const IppsFFTSpec_C _16sc *pFFTSpec, int scaleFactor, Ipp8u *pBuffer);
IppStatus ippsFFTInv_CToC_32sc_Sfs (const lpp32sc *pSrc, lIpp32sc *pDst,
const IppsFFTSpec_C 32sc *pFFTSpec, int scaleFactor, Ipp8u *pBuffer);

Description

These functions compute a forward/inverse FFT of a complex signal in the length of 22" whose
maximum length is 4096, and minimum length is 1. Besides the input/output formats are different
for the two APIs, another difference between two APIs is that the twiddle factor used in
<ippsFFTFwd/Inv_CToC_16sc_Sfs> is of Q14 format while the twiddle factor used in
<ippsFFTFwd/Inv_CToC_32sc_Sfs> is of Q30 format.

The DFT formula used in this function for complex forward/inverse FFT is:

S
X [k] — 2—scaleFactor z X[n]e Jzordar ’ Kk = 0’1,“.’20rder —1(N _ 20rder)
n=0

z—scaIeFactor order g 2r_
rder

e 2 XK'

k=0

k
X[n] — n= 0’1““,20rder —1(N — 20rder)

Before calling N-length forward FFT (), user should call <ippsFFTInitAlloc_C_16sc> for
<ippsFFTFwd_CToC_16sc_sfs>and <ippsFFTInitAlloc_C 32sc> for
<ippsFFTFwd_CToC_32sc_Sfs> to prepare and init the FFT specification used for this function.
Please refer to “Specification Initialization of FFT Functions” for its detailed information.

The pBuffer should also be allocated before calling this function, the buffer size should be
determined by <ippsFFTGetBufSize C_16sc> or <ippsFFTGetBufSize C_32sc>. Please
refer to “Buffer Size of FFT Functions” for detailed information.

After calling the forward FFT functions, <ippsFFTFree_C_16sc> or
<ippsFFTFree_C_32sc> should be called to free all the memory allocated by
<ippsFFTInitAlloc_C_16sc> or <ippsFFTInitAlloc_C_32sc>. Please refer to
“Specification Free FFT Functions” for detailed information.

Also, <ippsFFTInitAlloc_C_16sc>, <ippsFFTInitAlloc_C_32sc>,
<ippsFFTFree_C_16sc> and <ippsFFTFree_C_32sc> will call two system-dependent
callback functions <ippsMal loc> and <ippsFree>, and the user is also responsible for
implementing these two functions. Please refer to “CallBack Functions for Memory Alloc and
Free” for detailed information.
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Please refer to “Forward FFT Example:” for sample code of how to use this function.

Input Arguments

pSrc — pointer to the complex array that holds the input signals.
The number of elements in this array is is 1pp16sc type for
<ippsFFTFwd/Inv_CToC_16sc_Sfs> and Ipp32sc type for
<ippsFFTFwd/ Inv_CToC_32sc_Sfs>. Valid data access range is .

pFFTSpec — pointer to the FFT specification struct.

scaleFactor — scale factor of the output.
Valid data value range for <ippsFFTFwd/Inv_CToC_16sc_Sfs> is [0,16], and for
<ippsFFTFwd/Inv_CToC_32sc_Sfs>is [0,32].

pBuffer — pointer to the work buffer, must be prepared before this function is called.

Output Arguments

pDst — Pointer to the complex array that holds the output signals. The number of elements in this
array is 2°"%" js 1pp16sc type for <ippsFFTFwd/Inv_CToC_16sc_Sfs>and Ipp32sc type
for <ippsFFTFwd/Inv_CToC_32sc_Sfs>. Valid data access range is [0,2°7%€"-1] .

Return

IPP_STATUS_OK — No Error.

IPP_STATUS BAD_ ARG — Bad Arguments.

If the following conditions are not satisfied, this function returns 1PP_STATUS_BAD_ARG.

®  One of the pointer pSrc,pDst,pFFTSpec,pBuffer is NULL for
<ippsFFTFwd_CToC_16sc_Sfs>

®  One of the pointer pSrc, pDst, pFFTSpec is NULL for <ippsFFTFwd/Inv_CToC_32sc_Sfs>
® pSrc, or pDst is not aligned at 8-byte boundary

® pBuffer is not aligned at 8-byte boundary for <ippsFFTFwd/Inv_CToC_16sc_Sfs>

® order <0 or order > 12

®  scaleFactor<0 or scaleFactor >16 for <ippsFFTFwd/Inv_CToC 16sc_Sfs>
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®  scaleFactor<0 or scaleFactor >32 for <ippsFFTFwd/Inv_CToC_32sc_Sfs>

E NOTE. Alignment requirement:

= pSrc, pDst should be aligned at 8-byte boundary.
pBuffer should be aligned at 8-byte boundary for
<ippsFFTFwd/Inv_CToC_16sc_Sfs>.

NOTE. Accuracy Criteria

Suppose Out is the output of one of the above IPP FFT APIs, and Ref is the
output of the corresponding double-precision floating point FFT
implementation without any optimized algorithm. The accuracy criterion for
<ippsFFTFwd/Inv_CToC_16sc_Sfs>is defined as below:

=%NZ| ut, —ref,| <2, (N = 2°",0 < order <12)

i=0

Alignment requirements:
"pSrc, pDst should be aligned at 8-byte boundary.
"pBuffer should be aligned at 8-byte boundary for <ippsFFTFwd/Inv_CToC_16sc_Sfs>.

Accuracy Criteria

Suppose Out is the output of one of the above IPP FFT APIs, and Ref is the output of the
corresponding double-precision floating point FFT implementation without any optimized
algorithm. The accuracy criterion for <ippsFFTFwd/Inv_CToC_16sc_Sfs>is defined as below:

The accuracy criterion for <ippsFFTFwd/Inv_CToC_32sc_Sfs> is also defined as below:

Define
The varied length forward FFT <ippsFFTFwd/Inv_CToC_32sc_Sfs> satisfies:
SNR >=96 or d <1 (Notes: The latter criterion is set especially for small input signals

Forward FFT Example:
The following steps should be followed to use the <ippsFFTFwd_CToC_16sc_Sfs>.

1. Call <ippsFFTInitAlloc_C_16sc> to prepare and init the FFT specification.
2. Call <ippsFFTGetBufSize_C_16sc> to determine the buffer size.
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3. Allocate pBuffer according to the size got from Step 2.
4. Call forward FFT function <ippsFFTFwd_CtoC_16sc_Sfs>.

5. After calling FFT function, <ippsFFTFree_C_16sc> should be called to free all the memory
allocated by <ippsFFTInitAlloc_C_16sc>.

6. Also, <ippsFFTInitAlloc_C_16sc> and <ippsFFTFree_C_16sc> will call two
system-dependent callback functions <ippsMalloc> and <ippsFree>, and the user is also
responsible for implementing these two functions.

Here is an example for forward FFT.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include "ippSP.h"

IppStatus fft();

void* _CALLBACK ippsMalloc(int size)

! return malloc(size);
}
void _CALLBACK ippsFree(void* pSrcBuf)
{
free(pSrcBuf);
}
int mainQ
{
LLLIO M
}

IppStatus fft(Q)

{
Ipplésc x[8]., yl8l:
int n, bufSize;
IppStatus status;
IppsFFTSpec_C_16sc* pSpec = NULL;
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Ipp8u *pWorkBuf = NULL;
srand( (unsigned)time( NULL ) );

for(n=0; n<8; n++) {
x[n]-re = (1ppl6s) ((rand()%1024)-512);
X[n]-im = (1ppl6s) ((rand()%1024)-512);
}

status = ippsFFTInitAlloc_C 16sc(&pSpec, 3, IPP_FFT_NODIV_BY_ANY,
ippAlgHintNone );

status = ippsFFTGetBufSize_C_16sc(pSpec, &bufSize);

pWorkBuf= (Ipp8u*)malloc(bufSize);

status = ippsFFTFwd_CToC_16sc_Sfs ( X, y, pSpec, 0, pWorkBuf );

for(n=0; n<8; n++) {
printf("(%d, ", y[n].re);
printf("%d)\n", y[n].-im);

}

if(pSpec) {
ippsFFTFree_C_16sc ( pSpec );

}

free(pWorkBuf) ;

return status;

FFT functions for real signals

Function declarations:
IppStatus ippsFFTFwd_RToCCS_16s32s_Sfs (const Ippl6s *pSrc,
Ipp32s *pDst,
const lppsFFTSpec_R_16s32s *pFFTSpec,
int scaleFactor,
Ipp8u *pBuffer);
IppStatus ippsFFTFwd_RToCCS_32s_Sfs (const 1pp32s *pSrc,
Ipp32s *pDst,
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const lppsFFTSpec_R_16s32s *pFFTSpec,
int scaleFactor,
Ipp8u *pBuffer);
IppStatus ippsFFTInv_CCSToR_32sl16s_Sfs (const 1pp32s *pSrc,
Ippl6s *pDst,
const lppsFFTSpec R_32s *pFFTSpec,
int scaleFactor,
Ipp8u *pBuffer);
IppStatus ippsFFTINnv_CCSToR_32s_Sfs (const 1pp32s *pSrc,
Ipp32s *pDst,
const lppsFFTSpec_R_16s32s *pFFTSpec,
int scaleFactor,
Ipp8u *pBuffer);

Description:

These functions perform FFT transform between of a real signal in the length of, whose maximum
length is 4096 and the complex signal using CCS format.

Before calling N-length inverse FFT (), the user should call <ippsFFTInitAlloc_R_16s32s> or
<ippsFFTInitAlloc_R_32s> respectively to prepare and init the FFT specification used for this
function. Please refer to section “Specification Initialization of FFT Functions” for its detailed
information.

The pBuffer should also be allocated before calling this function, the buffer size should be
determined by <ippsFFTGetBufSize_R_16s32s> or <ippsFFTGetBufSize_R_32s> respectively.
Please refer to section “Buffer Size of FFT Functions” for detailed information.

After calling forward FFT functions, <ippsFFTFree_R_16s32s> or <ippsFFTFree_R_32s> should
be called to free all the memory allocated by <ippsFFTInitAlloc_R_16s32s> or
<ippsFFTInitAlloc_R_32s>. Please refer to section “Specification Free FFT Functions” for
detailed information.

Also, <ippsFFTInitAlloc_R_16s32s>, <ippsFFTInitAlloc_R_32s>, <ippsFFTFree_R_16s32s>
and <ippsFFTFree_R_32s> will call two system-dependent callback functions <ippsMalloc> and
<ippsFree>, and the user is responsible for implementing these two functions. Please refer to
“CallBack Functions for Memory Alloc and Free” for detailed information.

Please refer to “Real to Complex FFT Example:” for sample code of how to use this function.
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Input arguments:

pSrcPointer to the real array that holds the input signals. The number of elements in this array is
is Ipp16s type for <ippsFFTFwd_RToCCS 16s32s_Sfs> and
<ippsFFTInv_CCSToR_32s16s_Sfs>, and Ipp32sc type for <ippsFFTFwd_RToCCS_32s_Sfs>
and <ippsFFTInv_CCSToR_32s_Sfs>. Valid data access range is [0,2°%" —1].

pFFTSpec — Pointer to the FFT specification struct
scaleFactor — Scale factor of the output. Valid data value range is [0, 32].

pBuffer — Pointer to the work buffer, which must be prepared before this function is called. Its size
is determined by calling <ippsFFTGetBufSize_R_16s32s> or <ippsFFTGetBufSize_R_32s>.

Output arguments:

pDst — Pointer to the real array that holds the output in RCCcs format. The number of elements of
this array in Ipp32s type is [0,2°7%" +2]. Valid data access range is from [0,207%€" +1].

Return:
IPP_STATUS_OKNo Error.
IPP_STATUS_BAD_ARGBad Arguments.

If the following conditions are not satisfied, this function returns IPP_STATUS_BAD_ARG.
“One of the pointer pSrc, pDst, pFFTSpec, pBuffer is NULL

“pSrc, or pDst is not aligned at 8-byte boundary

“order <0 or order > 12

“scaleFactor<0 or scaleFactor >32

Alignment requirement:
“pSrc, pDst and pBuffer should be aligned at 8-byte boundary.

Accuracy Criteria

Suppose Out is the output of one of the above IPP FFT APIs, and Ref is the output of the
corresponding double-precision floating point FFT implementation without any optimized
algorithm. The accuracy criteria is defined as below:

Define
The <ippsFFTInv_CCSToR_32s16s_Sfs> satisfies:
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SNR >=83 or d <1 (Notes: The latter criterion is set especially for small input signals)
The real to complex forward FFT <ippsFFTFwd_RToCCS_16s32s_Sfs>satisfies:

SNR >=115 or d <1 (Notes: The latter criterion is set especially for small input signals)
The real to complex forward FFT <ippsFFTFwd_RToCCS_32s_Sfs> and
<ippsFFTInv_CCSToR_32s_Sfs> satisfies:

SNR >=116 or d <1 (Notes: The latter criterion is set especially for small input signals)

Real to Complex FFT Example:

Several steps should be followed to use the <ippsFFTFwd_RToCCS_16s32s_Sfs>.

Call <ippsFFTInitAlloc_R_16s32s> to prepare and init the FFT specification.

Call <ippsFFTGetBufSize R_16s32s> to determine the buffer size.

Allocate pBuffer according to the size got from step 2.

Call forward FFT function <ippsFFTFwd_RToCCS_16s32s_Sfs>.

After calling FFT function, <ippsFFTFree_R_16s32s> should be called to free all the

memory allocated by <ippsFFTInitAlloc_R_16s32s>.

6. Also, <ippsFFTInitAlloc_R_16s32s> and <ippsFFTFree_R_16s32s> will call two
system-dependent callback functions <ippsMalloc> and <ippsFree>, and the user is
responsible for implementing these two functions.

gk~ owbdpR

Here is an example for forward Real To Complex FFT.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include "ippSP.h"

IppStatus Fft();

void* _CALLBACK ippsMalloc(int size)

{
return malloc(size);
}
void _CALLBACK ippsFree(void* pSrcBuf)
{
free(pSrcBuf);
}
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int mainQ
{

LLLIOF
}

IppStatus fftQ)

{

Ippl6s x[8];

Ipp32s y[10];
int n, bufSize;
IppStatus status;
IppsFFTSpec_R_16s32s* pSpec = NULL;
Ipp8u *pWorkBuf = NULL;

srand( (unsigned)time( NULL ) );

for(n=0; n<8; n++) {
x[n] = (1ppl6s) ((rand()%1024)-512);
3

status = ippsFFTInitAlloc_R_16s32s(&pSpec, 3, IPP_FFT_NODIV_BY_ANY,
ippAlgHintNone );

status = ippsFFTGetBufSize_R_16s32s(pSpec, &bufSize);

pWorkBuf= (Ipp8u*)malloc(bufSize);

status = ippsFFTFwd_RToCCS_16s32s_Sfs ( X, Yy, pSpec, 0, pWorkBuf );

for(n=0; n<=4; n++) {
printf("(%d, ", y[2*n]);
printfC'%d)\n", y[2*n+1]);
}
1f(pSpec) {
ippsFFTFree_R_16s32s ( pSpec );
}
free(pWorkBuf) ;
return status;
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CallBack Functions for Memory Alloc and Free

Function declarations:
void* _CALLBACK ippsMalloc(int size);

Description:
This function allocate memory block of specific size.

Input arguments:
size — The size of memory (in bytes) to be allocated.

Output arguments:

None

Return:

Pointer to a valid allocated memory block if successful, or NULL if error occurs.

Function declarations:
void _CALLBACK ippsFree(void *pSrcBuf);

Description:
This function frees a specified memory block.

Input arguments:
pSrcBuf — Pointer to the memory block to be freed

Output arguments:
None

Return:

None

7-14



MP3 Audio Decoder

This chapter describes the Intel® Integrated Performance Primitives (Intel® IPP) on Intel® PCA
Processors with Intel® Wireless MMX™ (PCA processors with MMX ™) that can be used to
construct audio decoders compliant with the layer Il portions of the ISO/IEC 11172-3 MPEG-1
and ISO/IEC 13818-3 MPEG-2 audio specifications. These international standards for perceptual
coding (compression) of digital audio are most often denoted by the “MP3” acronym. The MP3
algorithm delivers high-quality audio with bit rates as low as one-tenth of the original, making it a
popular choice for cost-sensitive and bandwidth-constrained transmission and/or storage
applications. At the same time, the MP3 decoder is characterized by a manageable computational
complexity. As a result, MP3 has become the de-facto standard audio compression methodology
for emergent portable and handheld digital media, as well as for distribution of high-fidelity
compressed audio over networks such as the Internet.

This chapter provides a programmer’s reference guide to the Intel® IPP MP3 audio decoder
Application Programming Interface (API). As shown in Figure 8-1, the MP3 API consists of nine
primitives, two data structures, and several predefined constants and macros.
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Figure 8-1
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To benefit application developers, the design philosophy of the API emphasizes maximum
flexibility. On the one hand, developers have the option of building a complete MP3 decoder
solution using the compact set of performance optimized MP3 primitives described in this chapter
in conjunction with a few administrative and memory management functions customized for the
application environment. In this scenario, developers are able to leverage the fact that the MP3
primitives have been tuned carefully for minimum cycle count, minimum memory footprint, and
maximum audio quality. On the other hand, developers also have the option of building a custom
MP3 decoder while electing to use only a subset of the Intel® IPP MP3 primitives. This
development option is facilitated in the API by providing access to the intermediate computational
results generated by each of the core MP3 routines such as bit stream unpacking, Huffman
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decoding, requantization, stereo processing, the Inverse Modified Discrete Cosine Transform
(IMDCT) filter bank, and the Pseudo-Quadrature Mirror Synthesis filter (PQMF) bank. Moreover,
the primitive API grants user access to data objects that have a direct and unambiguous mapping
to the set of intermediate data objects defined in the ISO/IEC 11172-3 and 13818-3 layer 3
standards. Finally, the API allows the user to exploit fully performance properties of a particular
target operating system (OS) by allowing user management of administrative functions such as the
high-level bit stream manipulation, memory allocation/deallocation, and control of the various
buffers.

The rest of this chapter provides details on the MP3 API and is organized as follows. First, the
“Macros and Constants” section defines macros and constants. Next, the “Data Structures” section
addresses data structures. Lastly, the “Primitives” section is on the function prototypes.

Macros and Constants

Table 8-1 MP3 Macro and Constant Definitions
Global Macro’s Name Definition Notes
IPP_MP3_GRANULE_LEN 576 The number of samples in one granule
IPP_MP3_V_BUF_LEN 512 V data buffer length (32-bit words)
IPP_MP3_SF BUF_LEN 40 Scalefactor buffer length (8-bit words)

Data Structures

The decoder API includes two data structures. The structure <1 ppMP3FrameHeader> contains
the complete set of header information associated with one frame. The structure
<IppMP3Sidelnfo> contains the complete set of side information associated with one granule of
one channel.

Frame Header

typedef struct {
int id; /* 1D 1: MPEG-1, 0: MPEG-2 */
int layer; /* layer index Ox3: Layer |
// 0x2: Layer 11
// O0x1: Layer 111 */
int protectionBit; /* CRC flag 0: CRC on, 1: CRC off */
int bitRate; /* bit rate index */
int samplingFreq; /* sampling frequency index */
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int paddingBit; /* padding flag O0: no padding, 1 padding */
int privateBit; /* private_bit, not used */

int mode; /* mono/stereo selection */

int modeExt; /* extension to mode */

int copyright; /* copyright or not, 0: no, 1: yes */

int originalCopy; /* original or copied, 0: copy, 1: original*/
int emphasis; /* flag indicating the type of de-emphasis */
int CRCWord; /* CRC-check word */

} IppMP3FrameHeader;

Side Information
typedef struct {

int part23Len; /* number of main_data bits */

int bigVals; /* half the number of Huffman code words whose maximum
amplitudes may be greater than 1 */

int globGain; /* quantizes step size information */

int sfCompress; /* number of bits used for scale factors */

int winSwitch; /* window switch flag */

int blockType; /* block type flag */

int mixedBlock; /* flag 0: non mixed block, 1: mixed block */

int pTableSelect[3]; /* Huffman table index for the 3 rectangle in
<big_values> field */

int pSubBlkGain[3]; /* gain offset from the global gain for one
subblock */

int regOCnt; /* the number of scale factor bands in

the first region of <big_values> less one */
int reglCnt; /* the number of scale factor bands in

the second region of <big values> less one

*/

int preFlag; /* flag indicating high frequency boost */
int sfScale; /* scalefactor scaling */
int cntlTabSel; /* Huffman table index for the <countl> quadruples */

} 1ppMP3Sidelnfo;
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Primitives

There are ten primitives in the decoder API. The first three are concerned with bit stream
processing. The primitive <ippsUnpackFrameHeader_MP3> unpacks the audio frame header
from the raw input bit stream. The primitive <ippsUnpackSide Info_MP3> extracts the side
information associated with a single frame. The primitive
<ippsUnpackScaleFactors_MP3_1u8s> extracts from the bit stream the spectral coefficient
scalefactors associated with a one granule of one channel. The next two primitives provide
Huffman decoding and requantization of the spectral coefficients. The primitive
<ippsHuffmanDecode_MP3_1u32s> decodes the Huffman symbols from the raw bit stream
that are associated for one granule of one channel. The primitive
<ippsReQuantize_MP3_32s_1> requantizes the spectral samples associated with one granule
of one or two channels. This primitive also provides joint stereo and dual_channel decoding. The
last two primitives provide the two stages of the hybrid synthesis filter bank. Complete details for
each primitive are given next.

UnpackFrameHeader MP3

Prototype

IppStatus ippsUnpackFrameHeader_MP3(Ipp8u **ppBitStream,
IppMP3FrameHeader *pFrameHeader) ;

Description

Unpacks the audio frame header. If CRC is enabled, this primitive also unpacks the CRC word.
Before calling ippsUnpackFrameHeader_MP3, the decoder application should locate the bit
stream sync word and ensure that *ppBitStream points to the first byte of the 32-bit frame
header. If CRC is enabled, it is assumed that the 16-bit CRC word is adjacent to the 32-bit frame
header, as defined in the MP3 standard. Before returning to the caller, the primitive updates the
pointer *ppBitStream, such that it references the next byte after the frame header or the CRC
word. The first byte of the 16-bit CRC word is stored in pFrameHeader->CRCWord[15:8], and
the second byte is stored in pFrameHeader->CRCWord[7:0]. The primitive does not detect
corrupted frame headers.

Input Arguments
ppBitStream — double pointer to the first byte of the MP3 frame header
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Output Arguments

®* pFrameHeader — pointer to the MP3 frame header structure (defined in section “Data
Structures™)

®* ppBitStream - double pointer to the byte immediately following the frame header

Returns
®  ippStsNoErr —no error

® ippStsBadArgErr — invalid arguments — either ppBitStream, pFrameHeader, or
*ppBitStream is Null

UnpackSidelnfo MP3

8-6

Prototype

IppStatus ippsUnpackSidelnfo_MP3(Ipp8u **ppBitStream, IppMP3Sidelnfo
*pDstSidelnfo, int *pDstMainDataBegin, int *pDstPrivateBits, int
*pDstScfsi, IppMP3FrameHeader *pFrameHeader);

Description

Unpacks the side information from the input bit stream. Before ippsUnpackSidelnfo_MP3 is
called, the pointer *ppBitStream must point to the first byte of the bit stream that contains the
side information associated with the current frame. Before returning to the caller, the primitive
updates the pointer *ppBitStream such that it references the next byte after the side information.

Input Arguments

®* ppBitStream - double pointer to the first byte of the side information associated with the
current frame in the bit stream buffer

®* pFrameHeader — pointer to the structure that contains the unpacked MP3 frame header. The
header structure provides format information about the input bit stream. Both single- and
dual_channel MPEG-1 and MPEG-2 modes are supported.
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Output Arguments

® pDstSidelnfo — pointer to the MP3 side information structure(s). The structure(s)
contain(s) side information that applies to all granules and all channels for the current frame.
One or more of the structures are placed contiguously in the buffer pointed by
pDstSidelnTfo in the following order: { granule 0 (channel 0, channel 1), granule 1 (channel
0, channel 1) }.

* pDstMainDataBegin — pointer to the main_data_begin field

®* pDstPrivateBits - pointer to the private bits field

® pDstScfsi — pointer to the scalefactor selection information associated with the current
frame, organized contiguously in the buffer pointed to by pDstScfsi in the following order:
{channel 0 (scfsi_band 0, scfsi_band 1, ..., scfsi_band 3), channel 1 (scfsi_band 0, scfsi_band
1, ..., scfsi_band 3) }.

®* ppBitStream - double pointer to the bit stream buffer byte immediately following the side
information for the current frame

Returns

®  ippStsNoErr —no error

®* ippStsBadArgErr - bad argument; at least one of the following pointers is NULL:
ppBitStream, pDstSidelnfo, pDstMainDataBegin, pDstPrivateBits, pDstScfsi,
pFrameHeader, and/or *ppBitStream

®*  ippStsErr—one or more elements of the MP3 frame header structure are invalid, i.e., one or
more of the following conditions is true: pFrameHeader->id exceeds [0,1];
pFrameHeader->layer!=1; pFrameHeader->mode exceeds [0,3]; block type is normal
and window_switching_flag is set.

UnpackScaleFactors MP3 1u8s

Prototype

IppStatus ippsUnpackScaleFactors_MP3_1u8s(lpp8u **ppBitStream, int
*pOffset, Ipp8s *pDstScaleFactor, IppMP3Sidelnfo *pSidelnfo, iInt
*pScfsi, IppMP3FrameHeader *pFrameHeader, int granule, int channel);
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Description

Unpacks short and/or long block scalefactors for one granule of one channel and places the results
in the vector pDstScaleFactor. Before returning to the caller, the primitive updates
*ppBitStream and *pOffset such that they point to the next available bit in the input bit
stream.

g NOTE. If the intensity position is equal to the maximum value of intensity
.

position (an illegal position), the illegal position is set to negative. Thus, in the
requantization module, negative positions indicate illegal positions. Those
scalefactors that are not treated as intensity positions must be made positive
before using them.

Input Arguments

ppBitStream — double pointer to the first bit stream buffer byte that is associated with the
scalefactors for the current frame, granule, and channel

pOffset — pointer to the next bit in the byte referenced by *ppBitStream. Valid within the
range of 0 to 7, where 0 corresponds to the most significant bit and 7 corresponds to the least
significant bit.

pSidelnfo — pointer to the MP3 side information structure associated with the current
granule and channel

pScfsi — pointer to scalefactor selection information for the current channel
channel — channel index; can take on the values of either 0 or 1

granule — granule index; can take on the values of either 0 or 1
pFrameHeader — pointer to MP3 frame header structure for the current frame

Output Arguments

pDstScaleFactor — pointer to the scalefactor vector for long and/or short blocks
ppBitStrem — updated double pointer to the next bit stream byte

pOffset — updated pointer to the next bit in the bit stream (indexes the bits of the byte
pointed to by *ppBitStream). Valid within the range of 0 to 7, where 0 corresponds to the
most significant bit and 7 corresponds to the least significant bit.

Returns

ippStsNoErr — no error detected
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® ippStsBadArgErr — bad arguments; one or more of the following pointers is NULL.:
*ppBitStream, pOffset, pDstScaleFactor, pSidelnfo, pScfsi, *ppBitStream, or
pFrameHeader. Bad arguments are also flagged when the value of *pOffset exceeds [0,7]
or the granule or channel indices have values other than 0 or 1.

® ippStsErr - input data errors detected; one or more of the following are true:
pFrameHeader ->id exceeds [0,1], pSideInfo->blockType exceeds [0,3],
pSidelnfo->mixedBlock exceeds [0,1]. pScfsi [0..3] exceeds [0,1]. If
pFrameHeader->id indicates that the bit stream is MPEG-1, pSide Info->sfCompress
exceeds [0,15]. If pFrameHeader->id indicates the bit stream is MPEG-2,
pSidelInfo->sfCompress exceeds [0,511] or pFrameHeader->modeExt exceeds [0, 3].

HuffmanDecode MP3 1u32s
HuffmanDecodeStb MP3 1u32s
HuffmanDecodeSfbMbp MP3 1u32s

Prototype

IppStatus ippsHuffmanDecode MP3_1u32s(lpp8u **ppBitStream, int *pOffset,
Ipp32s *pDstls, int *pDstNonZeroBound, IppMP3Sidelnfo *pSidelnfo,
IppMP3FrameHeader *pFrameHeader, int hufSize);

IppStatus ippsHuffmanDecodeSTb_MP3_1u32s(lpp8u **ppBitStream, int
*pOffset, Ipp32s *pDstls, int *pDstNonZeroBound, IppMP3Sidelnfo
*pSidelnfo, IppMP3FrameHeader *pFrameHeader, int hufSize,
IppMP3ScaleFactorBandTableLong pSfbTableLong);

IppStatus ippsHuffmanDecodeSTtbMbp MP3_1u32s(lpp8u **ppBitStream, int
*pOffset, Ipp32s *pDstls, int *pDstNonZeroBound, IppMP3Sidelnfo
*pSidelnfo, IppMP3FrameHeader *pFrameHeader, int hufSize,
IppMP3ScaleFactorBandTableLong pSfbTablelLong,
IppMP3ScaleFactorBandTableShort pSfbTableShort,
IppMP3MixedBlockPartitionTable pMbpTable);

% NOTE. ippsHuffmanDecodeSFoMbp_MP3_1u32s was added in the IPP 4.1
_ Beta release. This function should be used for huffman decoding of the MP3
decoder when it is decoding a bit stream in the MPEG-2 LSF format.

8-9
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8-10

Description

Decodes Huffman symbols for the 576 spectral coefficients associated with one granule of one
channel.

Input Arguments

ppBitStream — double pointer to the first bit stream byte that contains the Huffman
codewords associated with the current granule and channel

pOffset-— pointer to the starting bit position in the bit stream byte pointed by
*ppBitStream; valid within the range of 0 to 7, where 0 corresponds to the most significant
bit, and 7 corresponds to the least significant bit

pSidelnfo — pointer to MP3 structure that contains the side information associated with the
current granule and channel

pFrameHeader — pointer to MP3 structure that contains the header associated with the
current frame

hufSize — the number of Huffman code bits associated with the current granule and channel
pSfbTableLong — pointer to Scalefactor band table for long block. User can use the default
table from MPEG-1 or MPEG-2 standards. User can also use his own table for special
purpose. For table format see references [ISO93] Table B.8 and [ISO98] Table B.2.
pSfbTableShort - pointer to Scalefactor band table for short block. User can use the
default table from MPEG-1, MPEG-2 standards. User can also use his own table for special
purpose. For table format see references [ISO93] Table B.8 and [ISO98] Table B.2.
pMbpTable — pointer to Scalefactor band table for mixed block. User can use the default
table from MPEG-1, MPEG-2 standards. User can also use his own table for special purpose.

Output Arguments

pDstls - pointer to the vector of decoded Huffman symbols used to compute the quantized
values of the 576 spectral coefficients that are associated with the current granule and channel
pDstNonZeroBound — pointer to the spectral region above which all coefficients are set
equal to zero

ppBitStream — updated double pointer to the particular byte in the bit stream that contains
the first new bit following the decoded block of Huffman codes

pOffset — updated pointer to the next bit position in the byte pointed by *ppBitStream;
valid within the range of 0 to 7, where 0 corresponds to the most significant bit, and 7
corresponds to the least significant bit

Returns

IPP_STATUS OK - no error detected
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® IPP_STATUS_BAD_ARG — bad arguments detected; at least one of the following pointers is
NULL: ppBitStream, pOffset, pDstls, pDstNonZeroBound, pSidelnfo,
pFrameHeader, pSfbTablelLong, or *ppBitStream. The flag is also asserted when
either of the following is true: *pOffset < 0, or *pOffset > 7.

® IPP_STATUS_ERROR - indicates that the number of remaining Huffman code bits for
<countl> partition is less than zero after decoding the <big_values> partition; alternatively,
as shown in Table 8-2, the code could also indicate either that one or more elements of the
MP3 side information are invalid or that one or more elements of the MP3 frame header are

invalid.

Table 8-2 ippStsErr List

Input Data
pSidelnfo-> bigVals * 2
pSidelnfo->bigVals * 2
pSidelnfo->winSwitch
pSidelnfo-> blockType
pSidelnfo->blockType
pSidelnfo->

cnt1TabSel

pSidelnfo-> reg0Cnt

pSidelnfo-> reglCnt

pSidelnfo-> reg0Cnt + pSidelnfo ->
reglCnt + 2

pSidelnfo-> pTableSelect [0]
pSidelnfo-> pTableSelect[1]
pSidelnfo-> pTableSelect [2]
pFrameHeader-> id
pFrameHeader-> layer
pFrameHeader-> samplingFreq
hufSize

Invalid Value

>IPP_MP3_GRANULE_LEN

<0
Exceeds [0,1]
Exceeds [0,3]

Exceeds [0,1]

<0

<0
> 22

Exceeds [0,31]
Exceeds [0,31]
Exceeds[0,31]
Exceeds [0,1]

=1

Exceeds [0,2]

Exceeds [0, pSidelnfo-> part23Len]

Condition

None

None

None

None

1 == pSidelnfo ->winSwitch
None

0 == pSidelnfo -> blockType
continued

0 == pSidelnfo ->blockType

0 == pSidelnfo -> blockType

None
None
0 == pSidelnfo ->blockType
None
None
None
None
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ReQuantize MP3 32s 1
ReQuantizeStb MP3 32s 1

8-12

Prototype

IppStatus ippsReQuantize MP3_32s_I(1pp32s *pSrcDstlsXr, int
*pNonZeroBound, Ipp8s *pScaleFactor, IppMP3Sidelnfo *pSidelnfo,
IppMP3FrameHeader *pFrameHeader, lpp32s *pBuffer);

IppStatus ippsReQuantizeSfb_MP3_32s_ 1| (Ipp32s *pSrcDstlsXr, int
*pNonZeroBound, lIpp8s *pScaleFactor, IppMP3Sidelnfo *pSidelnfo,
IppMP3FrameHeader *pFrameHeader, Ipp32s
*pBuffer, IppMP3ScaleFactorBandTableLong pSfbTablelLong,
IppMP3ScaleFactorBandTableShort pSfbTableShort);

Description

Requantizes the decoded Huffman symbols. Spectral samples for the synthesis filter bank are
derived from the decoded symbols using the requantization equations given in the 1SO standard.
Stereophonic mid/side (M/S) and/or intensity decoding is applied if necessary. Requantized
spectral samples are returned in the vector pSrcDstlsXr. The reordering operation is applied for
short blocks. Users must preallocate a workspace buffer pointed to by pBuffer prior to calling
the requantization primitive. The value pointed by pNonzZeroBound will be recalculated
according to the output data sequence.

Input Arguments

® pSrcDstlsXr — pointer to the vector of decoded Huffman symbols; for stereo and
dual_channel modes, right channel data begins at the address &(pSrcDstIsXr[576])

®  pNonZeroBound — (Inout/output argument) pointer to the spectral bound above which all
coefficients are set to zero; for stereo and dual-channel modes, the left channel bound is
pNonZeroBound [0], and the right channel bound is pNonZeroBound [1].

®* pScaleFactor — pointer to the scalefactor buffer; for stereo and dual-channel modes, the
right channel scalefactors begin at & (pScaleFactor [1PP_MP3_SF BUF_LEN] )

® pSidelnfo - pointer to the side information for the current granule
®* pFrameHeader — pointer to the frame header for the current frame
®* pBuffer —pointer to a workspace buffer. The buffer length must be 576 samples
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pSfbTableLong — pointer to Scalefactor band table for long block. User can use the default
table from MPEG-1 or MPEG-2 standards. User can also use his own table for special
purpose. For table format see references [ISO93] Table B.8, and [1SO98] Table B.2.
pSfbTableShort - pointer to Scalefactor band table for short block. User can use the

default table from MPEG-1 or MPEG-2 standards. User can also use his own table for special
purpose. For table format see references [ISO93] Table B.8 and [ISO98] Table B.2.

Output Arguments

pSrcDstlsXr — pointer to the vector of requantized spectral samples for the synthesis filter
bank, in Q5.26 format (Qm.n defined in Chapter 1). Only the first
(pNonZeroBound[ch]+17)/18 18-point blocks data are effctive. The others are meaningless at
all.

pNonZeroBound — (Input/output argument) pointer to the spectral bound above which all
coefficients are set to zero; for stereo and dual_channel modes, the left channel bound is
pNonZeroBound [0], and the right channel bound is pNonZeroBound [1].

Returns

ippStsNoErr — no errors detected

ippStsBadArgErr — bad arguments detected; one or more of the following pointers are
NULL: pSrcDstlsXr, pNonZeroBound, pScaleFactor, pSidelnfo, pFrameHeader or
pBuffer.

ippStsErr — one or more of the input error conditions listed in Table 8-3 is detected:

Table 8-3 ippStsErr List
Input Data Invalid Value Condition
pNonZeroBound [ch] Exceeds [0,576] None
pFrameHeader->id Exceeds [0,1] None
pFrameHeader -> samplingFreq Exceeds [0,2] None
pFrameHeader->mode Exceeds [0,3] None
pSidelnfo [ch]. blockType Exceeds [0,3] None
pFrameHeader-modeExt Exceeds [0,3] None
pSidelnfo [ch]. mixedBlock Exceeds [0,1] None
pSidelnfo [ch] .globGain Exceeds [0,255] None
pSidelnfo [ch]. sfScale Exceeds [0,1] None
pSidelnfo [ch]. preFlag Exceeds [0,1] None
pSidelnfo [ch]. pSubBIkGain [w] Exceeds [0,7] None

8-13
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Table 8-3 ippStsErr List

Input Data Invalid Value Condition

|pSrcDstlsXr [i]] >8206 None

pScaleFactor [sfb] >7 If pScaleFactor [sfb] is the intensity

position for MPEG-1.

pSidelnfo [ch]. blockType pSidelnfo [0]. blockType!= If the bit stream is joint stereo mode
pSidelnfo [1]. blockType

pSidelnfo[ch].mixedBlock pSidelnfo[0].mixedblock ! = If the bit stream is joint stereo mode
pSidelnf[1].mixedBlock

NOTE. In Table 8-3, the range on ch is from 0 to chNum-1, and the range on
_ w is from 0 to 2, where chNum is the number of channels decoded by the

pFrameHeader ->mode. If pFrameHeader ->mode == 3 then chNum = 1,
otherwise chNum = 2.

MDCTInv_MP3_32s

8-14

Prototype

IppStatus ippsMDCTInv_MP3_32s(lIpp32s *pSrcXr, lpp32s *pDstY, Ipp32s
*pSrcDstOverlapAdd, int nonZeroBound, int *pPrevNumOfimdct, int
blockType, int mixedBlock)

Description

Stage 1 of the hybrid synthesis filter bank.This performs the following operations: a) Alias
reduction, b) Inverse MDCT according to block size specifiers and mixed block modes, ¢) Overlap
add of IMDCT outputs, and d) Frequency inversion prior to PQMF bank. Because the IMDCT is a
lapped transform, the user must preallocate a buffer referenced by pSrcDstOver lapAdd to
maintain the IMDCT overlap-add state. The buffer must contain 576 elements. Prior to the first
call to the synthesis filter bank, all elements of the overlap-add buffer should be set equal to zero.
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In between all subsequent calls, the MP3 application must preserve the contents of the overlap-add
buffer. Upon entry to ippsMDCT Inv_MP3_32s, the overlap-add buffer should contain the IMDCT
output generated by operating on the previous granule; upon exit from ippsMDCTInv_MP3_32s,
the overlap-add buffer will contain the overlapped portion of the output generated by operating on
the current granule. Upon return from the primitive, the IMDCT sub-band output samples are
organized as follows: pDstY[j*32+subband], for j=0 to 17; subband=0 to 31.

% NOTE. The pointers pSrcXr (input argument) and pDstY (output argument)
= must reference different buffers.

Input Arguments

pSrcXr — pointer to the vector of requantized spectral samples for the current channel and
granule, represented in Q5.26 format.

% NOTE. The vector buffer is used as a workspace buffer when the input data
= has been processed. So the data in the buffer is meaningless when exiting the
function

® pSrcDstOverlapAdd — pointer to the overlap-add buffer; contains the overlapped portion of
the previous granule’s IMDCT output, in Q7.24 format

®* nonZeroBound - the bound above which all spectral coefficients are zero for the current
granule and channel

®  pPrevNumOfImdct — pointer to the number of IMDCTs computed for the current channel of
the previous granule

®* blockType - block type indicator
®* mixedBlock — mixed block indicator

Output Arguments
® pDstY — pointer to the vector of IMDCT outputs in Q7.24 format, for input to PQMF bank

® pSrcDstOverlapAdd — pointer to the updated overlap-add buffer in Q7.24 format; contains
overlapped portion of the current granule’s IMDCT output, in Q7.24 format

®  pPrevNumOfImdct — pointer to the number of IMDCTSs, for current granule, current channel

8-15
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Returns

®  ippStsNoErr —no errors detected

®* ippStsBadArgErr — bad arguments detected; one or more of the pointers pSrcXr, pDstY,
pSrcDstOver lapAdd, and/or pPrevNumOfImdct is NULL

® ippStsErr —one or more of the following input data errors detected: either blockType
exceeds [0,3], mixedBlock exceeds [0,1], nonZeroBound exceeds [0,576], or
*pPrevNumOfImdct exceeds [0,32]

SynthPQMF_MP3_32s16s

8-16

Prototype

IppStatus ippsSynthPQMF_MP3_32s16s(1pp32s *pSrcY, Ippl6és *pDstAudiolut,
Ipp32s *pVBuffer, int *pVPosition, int mode);

Description

Stage 2 of the hybrid synthesis filter bank; a critically-sampled 32-channel PQMF synthesis bank
that generates 32 time-domain output samples for each 32-sample input block of IMDCT outputs.
For each input block, the PQMF generates an output sequence of 16-bit signed little-endian PCM
samples in the vector pointed to by pDstAudioOut. If mode equals 2, the left and right channel
output samples are interleaved (i.e., LRLRLR), such that the left channel data is organized as
follows: pDstAudioOut [2*i], i=0 to 31.If mode equals 1, then the left and right channel
outputs are not interleaved. Because the PQMF bank contains memory, the MP3 application must
maintain two state variables in between calls to the primitive. First, the application must
preallocate for the PQMF computation a workspace buffer of size 512 x Number of Channels.
This buffer is referenced by the pointer pvBuffer, and its elements should be initialized to zero
prior to the first call. During subsequent calls, the pvBuffer input for the current call should
contain the pvbuffer output generated by the previous call. In addition to pvBuffer, the MP3
application must also initialize to zero and thereafter preserve the value of the state variable
pVPosition. The MP3 application should modify the values contained in pvBuffer or
pVPosition only during decoder reset, and the reset values should always be zero.

Input Arguments
®  pSrcY - pointer to the block of 32 IMDCT sub-band input samples, in Q7.24 format
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pVvBuffer — pointer to the input workspace buffer containing Q7.24 data. The elements of
this buffer should be initialized to zero during decoder reset. During decoder operation, the
values contained in this buffer should be modified only by the PQMF primitive.
pVPosition — pointer to the internal workspace index; should be initialized to zero during
decoder reset. During decoder operation, the value of this index should be preserved between
PQMF calls and should be modified only by the primitive.

mode — flag that indicates whether or not the PCM audio output channels should be
interleaved

1 —not interleaved

2 — interleaved

Output Arguments

pDstAudioOut - pointer to a block of 32 reconstructed PCM output samples in 16-bit signed
format (little-endian); left and right channels are interleaved according to the mode flag. This
should be aligned on a 4-byte boundary

pVBuffer — pointer to the updated internal workspace buffer containing Q7.24 data; see
usage notes under input argument discussion

pVPosition — pointer to the updated internal workspace index; see usage notes under input
argument discussion

Returns

ippStsNoErr — no errors detected

ippStsBadArgErr — bad arguments detected; either mode < 1, or mode > 2, or at least
one of the following pointers is NULL: pSrcY, pDstAudioOut, pvBuffer, and/or
pVPosition.

ippStsErr — the value of *pVPosition exceeds [0, 15]

8-17
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The ISO/IEC 11172-3 MPEG-1, Layer Il (so-called “MP3”) audio coding algorithms are widely
used to compress, respectively, stereophonic and dual-channel music signals. Ideally suited for
both transmission and storage applications, the MP3 algorithm delivers high-fidelity audio
playback quality with bit rates as low as one-tenth of the original. As a result, the MP3 algorithm
has become the de facto standard compression methodology for portable and handheld storage
media, as well as for transmission of high-fidelity compressed audio over the Internet. MP3
encoder is widely used in music storage and audio recording.

The MP3 encoder Application Programming Interface (API) provides a variety of capabilities,
including bit stream packing functions and MP3 core encoding functions, See [1SO-11172]. The
API enables customers to develop a variety of applications quickly using Intel XScale®
microarchitecture.

This chapter provides a programmer’s reference guide to the Intel Integrated Performance
Primitives (Intel® IPP) MP3 audio encoder API. As shown in Figure 9-1, this API includes several
functions as well as predefined macros and constants.
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Figure 9-1

Intel® IPP MP3 Encoder API (Flowchart of MP3 Encoder)
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Files and Libraries

This section describes the definitions and header files of the Intel® IPP MP3 audio encoder API.

Header Files

User must include <ippdefs.h> and <ippAC.h> at the beginning of the source code before

using any IPP functions, as shown in the following example:
#include “ippdefs.h”

#include “ippAC.h~

int mainQ

{

/* call MP3 encoder IPP functions */
ippsAnalysisPQMF_MP3_16s32s (pPcm, pXr, pcmMode);

Binary Libraries

The Intel® IPP MP3 audio coding binary library must be referenced by the linker when building
an application that references any of the Intel® IPP MP3 encoder primitives.

Two different versions are provided in the installation package. One is the debug version, which
provides any debug information. The other is the release version, which is used to link in
applications. The binary library for the Pocket PC operating system is named:
“ippAC_WMMX40BPPC_r.lib”.

Macros

A macro, in the language-independent context, is the defined symbolic name that is substituted
with particular replacement text at compilation or assembly time. A macro can be a numeric or
string constant, as well as functional unit.

9-3
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Common Macros

The <ippdefs.h> header file contains the following constants in Table 9-1.

Table 9-1 Common Macros
Macros Defined As Description
TRUE 1 Logic true
FALSE 0 Logic false
NULL ((void *)0) NULL pointer
IPP_MAX_16S 32767 The maximum 16-bit signed integer
IPP_MIN_16S -32768 The minimum 16-bit signed integer
IPP_MAX_32S 2147483647 The maximum 32-bit signed integer
IPP_MIN_32S -2147483648 The minimum 32-bit signed integer
Flags

Flags are predefined arguments or return values used by the API functions. The file <ippdefs.h>
contains the following flags in Table 9-2.

Table 9-2 Flag Macros
Macros Used In Description
ippStsNoErr No error
ippStsBadArgErr . Bad argument(s)
. Status code for all functions -
ippStsErr Some errors exists
ippStsNoMemErr Out of memory

Data Types and Structures

This following sections describe the data types and definitions of the Intel® IPP MP3 audio
encoder API.

General Data Types

The Intel XScale® microarchitecture supports only integer data types only, This means that the
parameters and return values of the API functions must be of integer type (including 1/2/4/8-byte
integer, integer-like structure and pointer). The most frequently used data types used in the API are
described in Table 9-3.

9-4
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Table 9-3 Common Data Types Used
Corre*sponding Data Type in
Data Type Corresponding Data Type in C ARM' Assembly
8-bit unsigned integer Ipp8u Byte
16-bit integer Ipp16s Signed Halfword
32-bit integer Ipp32s Signed Word
64-bit integer Ipp64s Signed Double Word
32-bit IPP status code typedef Ipp32s IppStatus; Signed Word

Pointer

Note: The term “any_type” refers to any type that is specified in Table 9-3.

any_type [Note]

Unsigned Word

MP3 CODEC Enumerated Types

The Intel® IPP MP3 encoder and decoder APIs define enumerated data types that facilitate the
synchronization and data transfer between the encoder and decoder components. As shown in
Table 9-4, the MP3 CODEC API includes several enumerated types that provide semantic
interpretations for frequently used constants.

Table 9-4

MP3 Enumerated Data Types

Enumerated Type Name
IppMP3BitRate

Symbolic Values
ippMP3BitRateFree
ippMP3BitRate32
ippMP3BitRate40
ippMP3BitRate48
ippMP3BitRate56
ippMP3BitRate64
ippMP3BitRate80
ippMP3BitRate96
ippMP3BitRate112
ippMP3BitRate128
ippMP3BitRate160
ippMP3BitRate192
ippMP3BitRate224
ippMP3BitRate256
ippMP3BitRate320

Constant Value

© 00 N o OB~ W N P O
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Table 9-4 MP3 Enumerated Data Types (continued)
Enumerated Type Name Symbolic Values Constant Value
IppMP3SampleRate ippMP3SampleRate32000

IppMP3PcmMode

IppMP3Emphasis

ippMP3SampleRate44100
ippMP3SampleRate48000
ippMP3NoninterleavedPCM
ippMP3InterleavedPCM
IppMP3EmphasisNone
IppMP3Emphasis5015
IppMP3EmphasisReserved
IppMP3CCITTJ17

W N P O NP P ODN

MP3 CODEC Data Structures

The following structures are used in the AP definitions of the MP3 encoder Intel® IPP functions.

IppMP3FrameHeader Structure

Structure <1ppMP3FrameHeader> contains the complete header information for one frame, listed below:

typedef struct {
int id;
int layer;

/* ID 1: MPEG-1, O: MPEG-2 */

/* layer index 0x3: Layer |1

// Ox2: Layer 11

// Ox1: Layer 111 */

int protectionBit;/* CRC switch flag 0: CRC on, 1: CRC off */

int bitRate;

int paddingBit;
int privateBit;

int mode;

int modeExt;

int copyright;

int originalCopy;

int emphasis;

9-6

int samplingFreq;

/* bit rate index. 0, */
/* sampling frequency index */
/* padding flag O: no padding, 1 padding */
/* free bit available for private. 1SO/IEC guarantees
that this bit will not be used in future */
/* mono/stereo indicator. 1:mono, 2:stereo
*/
/* extension to mode. 00: none, 10, mid/state coding
enabled. 01: intensity coding enabled. 11:
both mid/state and intensity coding enabled*/

/* copyright protected or not, O: no, 1: yes */
/* original or copied, 0: copy, 1: original */
/* de-emphasis type indicator */
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int CRCWord; /* CRC-check word */

} IppMP3FrameHeader;

The <emphasi s> values are shown in Table 9-5.

Table 9-5 Emphasis Value
Emphasis Value Emphasis Type
0 none
1 50/15 microseconds
2 reserved
3 CCITT J.17

IppMP3Sidelnfo Structure

Structure <IppMP3Side Info> contains all the side information need to decode one granule. MP3
granule side information is comprised of parameters that describe how to decode the scalefactors
and Huffman-encoded spectral coefficients.

typedef struct {

int

int

part23Len; /* the number of main_data bits used for scalfactor
and Huffman-encoded spectral coefficients*/

bigvals; /* the half number of Huffman data whose maximum amplitudes
cam be greater than 1. */

globGain; /* logarithmically quantized step size information */

sfCompress; /* information to select the number of bits used
for the transmission of the scale factors */

winSwitch; /* switching flag; O:normal window, 1:check blockType */

blockType; /* window type indicator: l:start, 2:short, 3:stop */

mixedBlock; /7* flag O0: non mixed block, 1: mixed block */

pTableSelect[3];/* Huffman table index for the 3 regions in
<big_values> field */

pSubBlkGain[3]; /* gain offset from the global gain for one
subblock */

reg0oCnt; /* one less than the number of scalefactor bands in
the first region of the <big values> field */
reglCnt; /* one less than the number of scalefactor bands in

the second region of the <big_values> field */
preFlag; /* preemphasis flag: l1=enable high frequency boost */

9-7
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int sfScale; /* scalefactor log quantization parameter:

O:scalefac_multiplier=0.5, 1l:scalefac_multipler=1 */

int cntlTabSel; /7* Huffman table index for the <countl> field of

quadruples O:Table B.7 -A, 1:Table B.7-B (1SO/IEC

11172-3)*/
} 1ppMP3Sidelnfo;

IppMP3PsychoAcousticModelTwoAnalysis Structure

The structure <IppMP3PsychoAcousticModel TwoAnalysis> contains the outputs generated
by the Intel® IPP implementation of ISO/IEC 11172-3 psychoacoustic analysis model 2, including
estimates of the masked thresholds and perceptual entropy associated with the current frame.
Masked thresholds are represented in terms of Mask-to-Signal Ratios (MSRs). he structure is
defined as follows.

typedef struct{
Ipp32s pMSR[36];/* MSRs for one granule/channel.

Ipp32s PE;

For long blocks, elements 0-20 represent the thresholds

associated with the 21 SFBs. For short blocks, elements
0,3,6,..,33, elements 1,4,...,34, and elements 2,5,...,35,
respectively, represent the thresholds associated with the

12 SFBs for each of the 3 consecutive short blocks in one
granule/channel. That is, the block thresholds are interleaved such
that the thresholds are grouped by SFB.*/

/* Estimated perceptual entropy, one granule/channel */

} 1ppMP3PsychoAcousticModel TwoAnalysis;

IppMP3PsychoAcousticModelTwoState Structure

The structure <IppMP3PsychoAcousticModel TwoState> contains the state information
associated with the Intel® IPP implementation of ISO/IEC 11172-3 psychoacoustic analysis model
2. This facilitates coherent block processing. The structure is defined as follows:
typedef struct {
Ipp64s pPrevMaskedThesholdLong[2][63]; /* long block masked threshold

history buffer; Contains masked threshold estimates for the threshold
calculation partitions associated with the two most recent long blocks */

Ipp64s pPrevMaskedThesholdShort[42]; /* short block masked threshold
history buffer; Contains masked threshold estimates for the threshold
calculation partitions associated with the most recent short block */

Ipp32sc pPrevFFT[2][6];/7* FFT history buffer; Contains real and imaginary
FFT components associated with the two most recent long blocks */
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Ipp32s pPrevFFTMag[2][6];:/* FFT magnitude history buffer; contains
FFT component magnitudes associated with the two most recent long blocks */

int nextPerceptualEntropy; /* PE estimate for next granule; one granule delay
provided for synchronization with analysis filterbank */

int nextBlockType;/* Expected block type for next granule; either long
(normal), short, or stop. Depending upon analysis results for the
granule following the next, a long block could change to a start block,
and a stop block could change to a short block. This buffer provides
one granule of delay for synchronization with the analysis filterbank */

Ipp32s pNextMSRLong[21];/* long block MSR estimates for next granule.
One granule delay provided for synchronization with analysis filterbank */

Ipp32s pNextMSRShort[36];/* short block MSR estimates for next granule.
One granule delay provided for synchronization with analysis filterbank */
} 1ppMP3PsychoAcousticModel TwoState;

IppMP3BitReservoir Structure

The structure <1ppMP3Bi tReservoir> contains the state information associated with the
quantization bit reservoir. The structure is defined as follows:
typedef struct {
int BitsRemaining;/* bits currently remaining in the reservoir */

int MaxBits; /* maximum possible reservoir size, in bits, determined
as follows: min(7680-avg_frame_ len, 279*8),
where: avg_frame_len is the average frame length (in bits),
including padding bits and excluding side information bits

} 1ppMP3BitReservoir;

MP3 Audio Encoder Primitives

This following sections describe the MP3 audio encoder API primitives.
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AnalysisPQMF_MP3 16s32s

9-10

Prototype

IppStatus ippsAnalysisPQMF_MP3_16s32s (const lIppl6s *pSrcPcm, 1pp32s
*pDstXs, int pcmMode);

Description

This function implements stage 1 of the MP3 hybrid analysis filterbank. It applies the
critically-sampled, block PQMF analysis bank characterized by the 512-sample prototype window
to a PCM input audio vector.

Call the ippsAnalysisPQMF_MP3_16s32s function 18 times per granule on each channel (36
times per channel on each frame).

Input Arguments

®  pSrcPcm - Pointer to the start of the buffer containing the input PCM audio vector. The
samples conform to the following guidelines:

— must be in 16-bit, signed, little-endian, Q15 format

— the most recent 480 (512-32) samples should be contained in the vector
pSrcPcm[pcmMode*i], where i=0,1,..,479

— the samples associated with the current granule should be contained in the vector
pSrcPcm[pcmMode*j], where j=480,481,..,1055

®* pcmMode — The PCM mode flag; informs the PQMF filterbank of which type of input PCM
vector organization to expect. These can be:

— pcmMode=1 denotes non-interleaved PCM input samples
— pcmMode=2 denotes interleaved PCM input samples

Output Arguments

®* pDstXs — Pointer to the start of the 576-element block PQMF analysis output vector
containing 18 consecutive blocks of 32 subband samples. These are indexed as follows:

— pDstXs[32*i+sb], where i=0,1,...,17 is time series index
— sb=0,1,...,31 is the subband index
*  All coefficients are represented using the Q7.24 format
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Returns
®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments. At least one of the following pointer arguments is
NULL: pSrcPcm, pDstXs, pDelayLine or pDelayL inelndex.

MDCTFwd_MP3_32s

Prototype

IppStatus ippsMDCTFwd_MP3_32s (const 1pp32s *pSrcXs, lpp32s *pDstXr, int
blockType, int mixedBlock, IppMP3FrameHeader *pFrameHeader, lpp32s
*pOverlapBuf);

Description

This function implements stage 2 of the MP3 hybrid analysis filterbank. It performs the following
operations:

1. Forward MDCT: An appropriately arranged set of 12-point and/or 36-point forward Modified
Discrete Cosine Transforms (MDCTs) is applied to the 18-sample spectral coefficient blocks
generated on each of the 32 PQMF subbands during stage | analysis.

2. Aliasing reduction butterflies: The butterflies specified in ISO/IEC 11172-3 are applied to the
MDCT outputs in order to mitigate the aliasing artifacts introduced by cascading two
critically sampled analysis filterbanks. Each of these introduces some non-negligible amount
of interband aliasing.

The function ippsMDCTFwd_MP3_32s updates the 576-element MDCT overlap buffer
pMDCTOverlap[], the contents of which must be preserved between calls to facilitate coherent
block processing. The function must be applied once per granule on each channel (that is, applied
twice per channel on each frame).

Input Arguments

® pSrcXs — Pointer to the start of the 576-element block PQMF analysis output vector
containing 18 consecutive blocks of 32 subband samples that are indexed as follows:
pDstS[32*i+sb], where i=0,1,...,17 is time series index, and sb=0,1,...,31 is the subband
index. All coefficients are represented using the Q7.24 format.

* blockType — Block type indicator. 0: normal block, 1: start block, 2: short block, 3: stop
block.
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* mixedBlock — Mixed block indicator. 0: not mixed, 1: mixed.

® pFrameHeader — Pointer to the 1ppMP3FrameHeader structure that contains the header
associated with the current frame. Only MPEG-1 (id=1) is supported.

® poverlapBuf - Pointer to the MDCT overlap buffer that contains a copy of the most recent
576-element block of PQMF bank outputs. Prior to processing a new audio stream with the
analysis filterbank, all elements of the buffer pOver lapBuf should be initialized to the
constant value 0.

Output Arguments

pDstXr — Pointer to the 576-element spectral coefficient output vector generated by the analysis
filterbank. All coefficients are represented using the Q5.26 format.

Returns
®  ippStsNoErr —no error

®* ippStsBadArgErr — bad arguments. At least one of the following pointer arguments is
NULL: pSrcXs, pDstXr, pFrameHeader or pOverlapBuf

PsychoAcousticModelTwo MP3 16s

9-12

Prototype

IppStatus ippsPsychoAcousticModelTwo_MP3_16s(const Ippl6s *pSrcPcm,
IppMP3PsychoAcoustic Model TwoAnalysis *pDstPsychoAcousticModelOutput,
int *pDstlsSfbBound, IppMP3Sidelnfo *pDstSidelnfo, IppMP3FrameHeader
*pFrameHeader, IppMP3PsychoAcousticModelTwoState
*pPsychoAcousticModelState, int pcmMode, 1pp32s *pWorkBuffer);

Description

This function implements the ISO/IEC 11172-3 psychoacoustic model recommendation 2 to
estimate the masked threshold and perceptual entropy associated with a block of PCM audio input.
Model outputs are used during the quantization process to estimate a perceptually optimal bit
allocation for the spectral coefficients generated by the analysis filterbank. The psychoacoustic
model also controls stereophonic MS/intensity mode selection and processing as well as analysis
filterbank block size switching. Given one frame of PCM input audio (1152 samples per channel =
2 granules * 576 samples per granule) the psychoacoustic model generates the following outputs:
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Estimated SFB (scalefactor band) Mask-to-Signal ratios (MSRs). The model generates a
vector of estimated MSRs for the 21 SFBs in long block mode and 12 SFBs for each of three
consecutive blocks in short block mode. The MSR is derived from the masked threshold,
which quantifies the simultaneous masking power associated with one granule/channel (576
samples) of input audio. Given the properties of the audio stimulus presented to the listener,
this threshold essentially quantifies the granule-instantaneous modified threshold of hearing.
Ideally, the threshold estimate should provide a frequency-dependent intensity (dB SPL)
profile beneath which an average listener cannot perceive quantization noise (or, for that
matter, any other spectral energy). To estimate the masked threshold from a block of input
audio, ippsPsych_MP3_16s implements the procedure recommended in Annex D.2 of
ISO/IEC 11172-3. First, the output of a classical FFT-based spectral analysis is grouped into
threshold calculation partitions that are organized to achieve analysis with sub-critical
bandwidth resolution. On each threshold calculation partition, the model employs a weighted
estimate of tone-like or noise-like signal behavior (determined by an assessment of a spectral
unpredictability across time) to estimate masking power in each partition. Then, a spreading
function is applied to model the spectral selectivity of the auditory system. Finally, the
estimated threshold is compared against the absolute threshold of hearing in quiet and the
maximum of the two is assigned to the threshold calculation partition. Ultimately, in order to
match its output to the bit allocation scheme of the quantization module, the model converts
from the threshold calculation partition scale to a scalefactor band (SFB) scale. One set of 21
SFB thresholds is generated for long blocks (576 samples), or three consecutive blocks of 12
SFB thresholds are generated for short blocks (192 samples). Finally, to facilitate efficient
quantization, the SFB thresholds are inverted and normalized by the signal energy and
returned in a vector of SFB Mask-to-Signal ratios (MSRs). The estimated MSRs are returned
in the PsychoAcousticMode I TwoAnalysis structure.

Estimated perceptual entropy. The model generates a perceptual entropy (PE) estimate for
each granule. The PE quantifies the minimum number of bits required to represent the PCM
samples of the granule with “perceptual transparency”. (That is, without audible loss of
quality for an average listener in comparison to the original, uncoded version.) The estimated
PE is derived from the masked threshold, in combination with classical assumptions about the
minimum number of bits required to achieve a particular signal-to-noise ratio (SNR) target in
each SFB (That is, incremental per bit SNR improvement = +6 dB), where the minimum
required SNR and hence minimum required number of bits for each SFB is derived from the
signal-to-mask ratio (SMR). Perceptual entropy is used to control analysis filterbank block
size switching, since sudden large PE increases are often associated with transient audio
events that are prone to pre-echo distortion. The PE estimate is returned in the
PsychoAcousticModel TwoAnalysis structure.

Analysis filterbank block size decision. Using perceptual entropy and other indicators, the
model determines whether or not the current granule is susceptible to pre-echo distortion.
Short block mode is enabled when pre-echoes are likely; otherwise long blocks are selected.
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In order to ensure selection of the appropriate block type, the decision incorporates single
block look ahead switching logic. For example, if the current block type is long and the next
block type is short, the current block type is changed from block type “long/normal” to block
type “long/start” in order to guarantee seamless block processing upon mode switch.
Similarly, if the current block type has been designated as “long/stop™ and the next block type
is determined to be “short”, the block switching logic will change the current block from
“long/stop” back to “short”, in order to avoid unnecessary mode switching. The block type
decision is returned in the frame/granule 1ppMP3SideInfo structure.

Joint stereophonic processing mode decision. For 2-channel audio sources, the model
evaluates interchannel correlations and other indicators in order to generate joint stereo
LR/MS and/or intensity processing mode decisions. The joint stereo mode decision is
returned in the modeExt field of the IppMP3FrameHeader structure.

Intensity stereo coding SFB bound decision. If intensity coding has been activated (see joint
stereophonic processing mode decision, above), the psychoacoustic model determines an
appropriate lower SFB bound above which all spectral coefficients should be encoded using
intensity mode stereophonic processing.

The psychoacoustic model performs analysis on a frame basis (1152 samples per channel),
including two granules and up to two channels for either stereophonic or dual mono inputs. Valid
lengths for both input and output vectors depend upon which mono or stereo channel modes have
been enabled. Details are given below on an argument-by-argument basis.

This function is performed on a frame base. The arguments have different sizes for mono and
stereo coding.

Input Arguments

pSrcPcm — Pointer to the start of the buffer containing the input PCM audio vector, the
samples of which should adhere to the following format specification: 16-bits per sample,
signed, little-endian, Q15. The pSrcPcm buffer should contain 1152 (= 2 granules x 576
samples/granule) samples if the parameter pFrameHeader->mode has the value of 1 (mono),
or 2304 (= 2 granules x 2 channels x 576 samples/granule) if the parameter
pFrameHeader->mode has the value of 2 (stereo, dual mono). In the stereophonic case, the
PCM samples associated with the left and right channels should be organized according to the
pcmMode flag. Failure to satisfy any of the above PCM format and/or buffer requirements
will result in undefined model outputs.

pFrameHeader - Pointer to the 1ppMP3FrameHeader structure that contains the header
associated with the current frame. The sampl ingFreq, id, and mode fields of the structure
*pFrameHeader control the behavior of the psychoacoustic model. All three fields must be
appropriately initialized prior to calling this function. All other frame header fields are
ignored. Only MPEG-1 (id=1) is supported.
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pPsychoAcousticModelState — Pointer to the first element in a set of

1ppMP3PsychoAcousticMode l TwoState structures that contains the psychoacoustic

model state information associated with both the previous and the current frames. The
number of elements in the set is equal to the number of channels contained in the input audio;
that is, a separate analysis is carried for each channel.

pcmMode — PCM mode flag; informs the psychoacoustic model of which type of PCM vector

organization to expect.

— pcmMode=1 denotes non-interleaved PCM input samples. That is, pSrcPcm[0..1151]
contains the input samples associated with the left channel, and pSrcPcm[1152..2303]
contains the input samples associated with the right channel.

— pcmMode=2 denotes interleaved PCM input samples. That is, pSrcPcm[2*i] and
pSrcPcm[2*i+1] contain the samples associated with the left and right channels,
respectively, where i=0,1,...,1151.

As an alternative to the constants 1 and 2, appropriately typecast elements

ippMP3NonInterleavedPCM and ippMP3InterleavedPCM of the enumerated type

I ppMP3PcmMode can also be used for pcmMode.

pWorkBuffer — Pointer to a workspace buffer internally used by the psychoacoustic model

for storage of intermediate results and other temporary data. The buffer length must be at least

25,200 bytes (6300 elements of type Ipp32s).

Output Arguments

pDstPsychoAcousticModelOutput — Pointer to the first element in a set of
PsychoAcousticMode l TwoAnalysis structures. Each set member contains the MSR and
PE estimates for one granule. The number of elements in the set is equal to 2 * the number of
channels, with the outputs arranged as follows: (Analysis[0] = granule 1, channel 1),
(...Analysis[1] = granule 1, channel 2), (...Analysis[2] = granule 2, channel 1),
(...Analysis[3] = granule 2, channel 2).

pDstlsSfbBound — If intensity coding has been enabled, pDstlsSfhBound points to the list
of SFB lower bounds above which all spectral coefficients should be processed by the joint
stereo intensity coding module. Because the intensity coding SFB lower bound is
block-specific, the number of valid elements pointed to by pDstlsSfbBound will vary
depending upon the individual block types associated with each granule. In particular, the list
of SFB bounds is indexed as follows: p1sSfbBound[3*gr] for long block granules, and
p1sSTtbBound[3*gr + w] for short block granules, where gr is the granule index (O=granule
1, 1=granule 2), and w is the block index (0=block 1, 1=block 2, 2=block 3). For example,
given short-block analysis in granule 1 followed by long block analysis in granule 2, the list
of SFB bounds would be generated in the following order: plsSfbBound][] = {granule
1/block 1, granule 1/block 2, granule 1/block 2, granule 2/long block}. Only one SFB lower
bound decision is generated for long block granules, whereas three are generated for short
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block granules. If both MS and intensity coding are enabled, then the SFB intensity coding
lower bound simultaneously represents the upper bound SFB for MS coding. If only MS
coding has been enabled, then the SFB bound represents the lowest non-MS SFB.

pDstSidelnfo — Pointer to the updated set of 1ppMP3Side Info structures associated with
all granules and channels. The model updates the following fields in all set elements:
blockType, winSwitch, and mixedBlock. The number of elements in the set is equal to
2 times the number of channels. Ordering of the set elements is the same as
pDstPsychoAcousticModelOutput.

pPsychoAcousticModel State — Pointer to the first element in a set of
IppMP3PsychoAcousticModel TwoState structures that contains the updated psychoacoustic
model state information associated with both the current frame and next frame. The number
of elements in the set is equal to the number of channels contained in the input audio. That is,
a separate analysis is carried for each channel.

Prior to encoding a new audio stream, all elements of the pyschoacoustic model state
structure *pPsychoAcousticModelState should be initialized to contain the value 0. In
the ippSP function domain, this could be accomplished using the function ippszZero_16s as
follows:

ippsZero_16s ((lppl6s *)

pPsychoAcousticModelState, sizeof(IppMP3PsychoAcousticModelTwoState)/
sizeof(Ippl6s)).

pFrameHeader — Pointer to the updated IppMP3FrameHeader structure that contains the
header associated with the current frame. The model updates the element modeExt to reflect
the joint stereo coding mode decision. No other frame header fields are modified by this

function.

Returns

ippStsNoErr — no error

ippStsBadArgErr — bad arguments. At least one of the following pointer arguments is
NULL: pSrcPcm, pPsychoAcousticModelState,
pDstPsychoAcousticModelOutput, pFrameHeader, pSidelnfo, or
pDstlsSfbBound.



MP3 Audio Encoder 9

JointStereoEncode MP3 32s 1

Prototype

IppStatus ippsJointStereoEncode_MP3_32s 1 (Ipp32s *pSrcDstXrL, lpp32s
*pSrcDstXrR, Ipp8s *pDstScaleFactorR, IppMP3FrameHeader
*pFrameHeader, IppMP3Sidelnfo *pSidelnfo, int *plsSfbBound);

Description

This function transforms the independent left and right channel spectral coefficient vectors into
combined mid/side (MS) and/or intensity (IS) mode coefficient vectors suitable for quantization.
If MS coding has been enabled (pFrameHeader->modeExt & 0x10 == 1), the left and right
channels are converted to Mid and Side channels as follows:

L+R L-R

- §g=-—-

V2 V2

This function is called on dual granule basis. Call it for every granule / 2 channels.

M =

If intensity coding has been enabled (pFrameHeader->modeExt & 0x01 = 1) the left channel is
used to carry the intensity data for SFBs above the SFB intensity lower bound, and the right
channel above the SFB lower bound is cleared (all coefficients = 0).

L=L+R, R=0

In order to facilitate energy-proportional recovery of the left and right spectral coefficients at the
decoder, an intensity energy scalefactor, IS _ POS, is transmitted in place of the right channel
scalefactor since the right channel spectral coefficients above the SFB bound have been
eliminated. The energy normalization constant is derived from the L/R SFB energy ratios and then
transformed to improve its quantization properties. That is:

IS_pos=n int[Earctan{ /ﬂj}
V4 R _energy

where L_energy and R _energy are, respectively, the SFB energies associated with the
spectral coefficients of the left and right channels. At the decoder, the IS _ pos scalefactor is used

9-17



9 Intel® IPP on Intel® PCA Processors

9-18

to apportion jointly coded signal energy between left and right channels in a manner consistent
with the distribution of signal energy prior to joint coding. The 1S _ pos intensity scalefactors are
returned in the vector pDstScalefactorR.

On each granule, joint stereo coding is applied once per channel pair (576 samples per granule on
each channel). The function ippsJointStereoEncode_MP3_32s_ I must therefore be called
once per granule, or twice per frame.

Input Arguments

pSrcDstXrL — Pointer to the 576-element spectral coefficient output vector generated by the
analysis filterbank for the left channel of input audio. All coefficients are represented using
the Q5.26 format.

pSrcDstXrR — Pointer to the 576-element spectral coefficient output vector generated by the
analysis filterbank for the right channel of input audio. All coefficients are represented using
the Q5.26 format.

pFrameHeader — Pointer to the IppMP3FrameHeader structure that contains the header
information associated with the current frame. Upon function entry, the structure fields
samplingFreq, id, mode, and modeExt should contain, respectively, the sample rate associated
with the current input audio, the algorithm id (MPEG-1 or MPEG-2), and the joint stereo
coding commands generated by the psychoacoustic model. All other *pFrameHeader fields
are ignored. Only MPEG-1 (id=1) is supported.

pSidelnfo — Pointer to the pair of 1ppMP3Side Info structures associated with the channel
pair to be jointly encoded. The number of elements in the set is 2, and ordering of the set
elements is as follows: pSidelInfo[0] describes channel 1, and pSidelnfo[1] describes
channel 2. Upon function entry, the blockType side information fields for both channels
should reflect the analysis modes (short or long block) selected by the psychoacoustic model
on each channel. All other fields in the pSideInfo[0] and pSidelnfo[1] structures are
ignored

p1sSfbBound — Pointer to the list of intensity coding SFB lower bounds for both channels of
the current granule above which all L/R channel spectral coefficients will be combined into
an intensity-coded representation. The number of elements depends on the block type
associated with the current granule. For short blocks, the SFB bounds are represented in the
following order: (p1sSTbBound[0] describes block 1, plsSfbBound[1] describes block 2,
and p1sSfbBound[2] describes block 3). For long blocks, only a single SFB lower bound
decision is required; it is represented in plsSfbBound[0]. If both MS and intensity coding
have been enabled, then the SFB intensity coding lower bound simultaneously represents the
upper bound SFB for MS coding. If only MS coding has been enabled, then the SFB bound
represents the lowest non-MS SFB.
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Output Arguments

® pSrcDstXrL — Pointer to the 576-element joint stereo spectral coefficient output vector
associated with the M channel, as well as the intensity coded coefficients above the intensity
lower SFB bound. All elements are represented using the Q5.26 format.

® pSrcDstXrR - Pointer to the 576-element joint stereo spectral coefficient output vector
associated with the S channel. All elements are represented using the Q5.26 format.

®* pDstScaleFactorR — Pointer to the vector of scalefactors associated with one granule of
the right/S channel. If intensity coding has been enabled by the psychoacoustic model above a
certain SFB lower bound (as indicated by the frame header and the vector pointed to by
p1sSfbBound), then ippsStereoEncode_MP3_32s_1 updates with the appropriate
scalefactors those elements of pDstScaleFactorR[] that are associated with intensity coded
scalefactor bands. Other SFB entries in the scalefactor vector are not modified. The length of
the vector referenced by pDstScaleFactorR varies as a function of block size. It contains
21 elements for long block granules, or 36 elements for short block granules.

Returns
®  ippStsNoErr — no error

® ippStsBadArgErr —bad arguments. At least one of the following pointer arguments is
NULL: pSrcDstXrL, pSrcDstXrR, pFrameHeader, pSidelnfo, or plsSfbBound.

Quantize MP3 32s 1

Prototype

IppStatus ippsQuantize_MP3_32s 1 (Ipp32s *pSrcDstXrix, lpp8s
*pDstScalefactor, int *pDstScfsi, int *pDstCountllLen, int
*pDstHufSize, IppMP3FrameHeader *pFrameHeader, IppMP3Sidelnfo
*pSidelnfo, IppMP3PsychoAcousticModelTwoAnalysis
*pPsychoAcousticModelOutput, 1ppMP3PsychoAcousticModelTwoState
*pPsychoAcousticModelState, IppMP3BitReservoir *pBitResv, int
meanBits, int *plsSfbBound, Ipp32s *pWorkBuffer);

Description

This function quantizes the spectral coefficients generated by the analysis filterbank such that the
resulting distortion (quantization noise) is shaped to match a profile derived from the masked
thresholds estimated by the psychoacoustic model. While satisfying these perceptual distortion
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criteria, the quantizer simultaneously adjusts the overall bit allocation to achieve a fixed bit rate
target. In accordance with the ISO/IEC 11172-3 recommendation, a bit reservoir is maintained in
order to meet instantaneous peak rate demands without violating on an average basis the fixed rate
constraint. Surplus bits are deposited in the reservoir during frames with lower than average
perceptual bit rate requirements; supplementary bits are withdrawn from the reservoir to satisfy
frames with higher-than-average perceptual bit allocation requirements. The quantizer manages
the reservoir and overall bit allocation such that a constant average rate constraint is satisfied. The
quantizer operates on a complete frame of data (2 granules, 1 or 2 channels), and it should
therefore be called once per frame.

Input Arguments

pSrcDstXrix — Pointer to the set of unquantized spectral coefficient vectors generated by
the analysis filterbank and optionally processed by the joint stereo coding module for one
frame. The set of unquantized coefficients should be indexed as follows:
pSrcDstXrix[gr*1152 + ch*576 + i] for stereophonic and dual-mono input sources, and
pSrcDstXrix[gr*576 + i] for monaural (single channel) input sources, where i=0,1,...,575
is the spectral coefficient index, gr is the granule index (O=granule 1, 1=granule 2), and ch is
the channel index (0=channel 1, 1=channel 2). Depending on which type of joint coding has
been applied (if any), the coefficients for each channel could be associated with L/R, M/S,
and/or intensity representations of the input audio. All coefficients should be represented
using the Q5.26 format.

pFrameHeader - Pointer to the 1ppMP3FrameHeader structure that contains the header
information associated with the current frame. Upon function entry, the structure fields
samplingFreq, id, mode, and modeExt should contain, respectively, the sample rate
associated with the current input audio, the algorithm id (MPEG-1 or MPEG-2), and the joint
stereo coding commands generated by the psychoacoustic model. All other *pFrameHeader
fields are ignored. Only MPEG-1 (id=1) is supported.

pSidelnfo — Pointer to the set of 1ppMP3Side Info structures associated with all granules
and channels. The set should contain 2*nchan, elements and should be indexed as follows:
pSidelnfo[gr*nchan+ch], where gr is the granule index (O=granule 1, 1=granule 2),
nchan is the number of channels, and ch is the channel index (O=channel 1, 1=channel 2).
Upon function entry, in all set elements the structure fields blockType, mixedBlock, and
winSwitch should contain, respectively, the block type indicator (start, short, or stop), filter
bank mixed block analysis mode specifier, and window switching flags (normal or
blockType) associated with the current input audio. All other *pSide Info fields are ignored
upon function entry and updated upon function exit, as described below under the description
of output arguments.

pPsychoAcousticModelOutput — Pointer to the first element in a set of
PsychoAcousticMode l TwoAnalysis structures associated with the current frame. Each
set member contains the MSR and PE estimates for one channel of one granule. The set
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should contain 2*nchan, elements and is indexed as:
pPsychoAcousticModelOutput[gr*nchan+ch], where gr is the granule index
(O=granule 1, 1=granule 2), nchan is the number of channels, and ch is the channel index
(O=channel 1, 1=channel 2).

pPsychoAcousticModelState — Pointer to the first element in a set of
IppMP3PsychoAcousticMode l TwoState structures that contains the psychoacoustic
model state information associated with both the current frame and next frame. The number
of elements in the set is equal to the number of channels contained in the input audio. That is,
a separate analysis is carried for each channel. The quantizer uses the frame type lookahead
information (nextBlockType) to manage the bit reservoir. All other structure elements are
ignored by the quantizer.

pBitResv — Pointer to the 1ppMP3BitReservoir structure that contains the bit reservoir
state information. Upon function entry, all structure fields should contain valid data.

meanBits — The number of bits allocated on an average basis for each frame of spectral
coefficients and scalefactors given the target bit rate (kilobits per second) specified in the
frame header. This number excludes the bits allocated for the frame header and side
information. The quantizer uses meanBits as a target allocation for the current frame. Given
perceptual bit allocation requirements greater than this target, the quantizer makes use of the
surplus bits held in the bit reservoir to satisfy frame-instantaneous demands. Similarly, given
perceptual bit allocation requirements below this target, the quantizer will store surplus bits in
the bit reservoir for use by future frames

p1sSfbBound — Pointer to the list of SFB lower bounds above which all L/R channel spectral
coefficients have been combined into an intensity-coded representation. The number of valid
elements pointed to by p1sSfbBound depends upon the block types associated with the
granules of the current frame. In particular, the list of SFB bounds pointed to by
p1sSfbBound is indexed as follows: p1sSfbBound[3*gr] for long block granules, and
p1sSfbBound[3*gr + w] for short block granules, where gr is the granule index (O=granule
1, 1=granule 2), and w is the block index (0=block 1, 1=block 2, 2=block 3). For example,
given short-block analysis in granule 1 followed by long block analysis in granule 2, the list
of SFB bounds would be expected in the following order: plsSfbBound[] = {granule
1/block 1, granule 1/block 2, granule 1/block 2, granule 2/long block}. If a granule is
configured for long block analysis, then only a single SFB lower bound decision is expected,
whereas three are expected for short block granules. If both MS and intensity coding have
been enabled, then the SFB intensity coding lower bound simultaneously represents the upper
bound SFB for MS coding. If only MS coding has been enabled, then the SFB bound
represents the lowest non-MS SFB.

pWorkBuffer — Pointer to a workspace buffer internally used by the quantizer for storage of
intermediate results and other temporary data. The buffer length should be at least 2880 bytes
(720 32-bit words).
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Output Arguments

pSrcDstXrix — Pointer to the output set of quantized spectral coefficient vectors. These are
suitable for input to the Huffman encoder. The coefficients are indexed as follows:
pSrcDstXrix[gr¥1152 + ch*576 + i] for stereophonic and dual-mono input sources, and
pSrcDstXrix[gr*576 + i] for monaural (single channel) input sources, where i=0,1,...,575
is the spectral coefficient index, gr is the granule index (O=granule 1, 1=granule 2), and ch is
the channel index (O=channel 1, 1=channel 2).

pDstScaleFactor - Pointer to the output set of scalefactors generated during the
quantization process. These scalefactors determine the quantizer granularity. Scalefactor
vector lengths depend on the block mode associated with each granule. The order of the
elements is: (granule 1, channel 1), (granule 1, channel 2), (granule 2, channel 1), (granule 2,
channel 2). Given this general organization, the side information for each granule/channel in
conjunction with the flags contained in the vector pDstScfsi can be used to determine the
precise scalefactor vector indices and lengths.

pDstScfsi — Pointer to the output vector of scalefactor selection information. This vector
contains a set of binary flags that indicate whether or not scalefactors are shared across
granules of a frame within predefined scalefactor selection groups. For example, bands
0,1,2,3,4,5 form one group; bands 6,7,8,9,10 form a second group (as defined in ISO/IEC
11172-3). The vector is indexed as follows: pDstScfsi[ch][scfsi_band], where ch is
the channel index (0=channel 1, 1=channel 2), and scfsi_band is the scalefactor selection
group number (group 0 includes SFBs 0-5, group 1 includes SFBs 6-10, group 2 includes
SFBs 11-15, and group 3 includes SFBs 16-20).

pDstCountllLen — Pointer to an output vector of countl region length specifiers. For the
purposes of Huffman coding spectral coefficients above (of higher frequency than) the
bigvals region, the countl parameter indicates the size of the region in which spectral samples
can be combined into 4-tuples for which all elements are of magnitude less than or equal to 1.
The vector contains 2*nchan, elements and is indexed as follows:
pDstCountllLen[gr*nchan+ch], where gr is the granule index (O=granule 1, 1=granule 2),
nchan is the number of channels, and ch is the channel index (0=channel 1, 1=channel 2)

pDstHufSize — Pointer to an output vector of Huffman coding bit allocation specifiers. For
each granule/channel, these indicate the total number of Huffman bits that are required to
represent the quantized spectral coefficients in the bigvals and countl regions. Whenever
necessary, each HufSize bit count is augmented to include the number of bits required to
manage the bit reservoir. For frames in which the reservoir has reached maximum capacity, it
is necessary for the quantizer to expend the surplus bits by padding with additional bits the
Huffman representation of the spectral samples; the HufSize result returned by the quantizer
reflects these padding requirements. That is, HuFSize[i]=number of bits required for
Huffman symbols + number of padding bits. The vector contains 2*nchan, elements and is
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indexed as follows: pDstHuUfSize[gr*nchan+ch], where gr is the granule index (O=granule
1, 1=granule 2), nchan is the number of channels, and ch is the channel index (0=channel 1,
1=channel 2).

® pSidelnfo - Pointer to the set of updated 1ppMP3SideInfo side information structures. In
all set elements, the quantizer modifies the following structure fields: part23Len, bigvals,
globGain, sfCompress, pTableSelect[0]-[2], pSubBlkGain[0]-[2], regOCnt,
reglCnt, sfScale, preFlag, and cntlTabSel. Detailed functional descriptions of the
fields are given in the side information structure discussion. The set contains 2*nchan,
elements and is indexed as follows: pSidelnfo[gr*nchan+ch], where gr is the granule index
(O=granule 1, 1=granule 2), nchan is the number of channels, and ch is the channel index
(O=channel 1, 1=channel 2).

® pBitResv - Pointer to the updated 1ppMP3BitReservoir structure. The quantizer updates
the BitsRemaining field to add or remove bits as necessary. All other fields are unmodified
by the quantizer.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr- bad arguments. At least one of the pointer arguments is NULL.

PackScalefactors MP3 8slu

Prototype

IppStatus ippsPackScalefactors MP3_8slu (const Ipp8s *pSrcScalefactor,
Ipp8u **ppBitStream, int *pOffset, IppMP3FrameHeader *pFrameHeader,
IppMP3Sidelnfo *pSidelnfo, int *pScfsi, int granule, int channel);

Description

This function applies noiseless (lossless) coding to the scalefactors and then packs the output into
the bit stream buffer. This function operates on one channel of one granule at a time, and it
therefore must be called once for each channel of each granule. The resulting bit stream is fully
compliant with the syntax specified in ISO/IEC 11172-3.

® pSrcScaleFactor — Pointer to a vector of scalefactors generated during the quantization
process for one channel of one granule. Scalefactor vector lengths depend on the block mode;
short block granule scalefactor vectors contain 36 elements (12 per subblock), and long block
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granule scalefactor vectors contain 21 elements. Thus, short block scalefactor vectors are
indexed as follows: pSrcScaleFactor[sb*12+sfb], where sb is the subblock index
(O=subblock 1, 1=subblock 2, 2=subblock 3) and sfb is the scalefactor band index (0-11), and
long block scalefactor vectors are indexed as follows: pSrcScaleFactor[sfb], where sfb
is the scalefactor band index (0-20). The associated side information for an individual
granule/channel can be used to select the appropriate indexing scheme.

ppBitStream — Pointer to the encoded bit stream buffer. The ppBitStream parameter is a
double pointer to the first byte in the bit stream buffer intended to receive the
Huffman-encoded scalefactor bits generated by the function
ippsEncodeScaleFactors_MP3_8siu. The scalefactor Huffman bits are sequentially
written into the stream buffer starting from the bit indexed by the combination of byte pointer
*ppBitStream and bit pointer pOffset.

pOffset — Bit stream bit pointer. Indexes the next available bit in the byte referenced by
*ppBitStream. The pOffset parameter indexes the next available bit in the byte
referenced by *ppBitStream. This parameter is valid within the range of 0 to 7, where 0
corresponds to the most significant bit and 7 corresponds to the least significant bit.

pFrameHeader — Pointer to the 1ppMP3FrameHeader structure for this frame. Upon
function entry, the structure fields id and modeExt should contain, respectively, the algorithm
id (MPEG-1 or MPEG-2) and the joint stereo coding commands generated by the
psychoacoustic model. All other *pFrameHeader fields are ignored. Only MPEG-1 (id=1) is
supported.

pSidelnfo — Pointer to the 1ppMP3SideInTfo structure for the current granule and channel.
Upon function entry, the structure fields blockType, mixedBlock, and sfCompress should
contain, respectively, the block type indicator (start, short, or stop), filter bank mixed block
analysis mode specifier, and scalefactor bit allocation. All other *pSidelInfo fields are
ignored by the scalefactor encoder.

pScfsi — Pointer to the scale factor selection information table. This contains the set of
binary flags that indicate whether or not scalefactors are being shared across granules of a
frame within the predefined scalefactor selection groups. For example, bands 0,1,2,3,4,5 form
one group; bands 6,7,8,9,10 form a second group (as defined in ISO/IEC 11172-3). The vector
is indexed as follows: pScfsi[ch][scfsi_band], where ch is the channel index
(O=channel 1, 1=channel 2), and scfsi_band is the scalefactor selection group number (group
0 includes SFBs 0-5, group 1 includes SFBs 6-10, group 2 includes SFBs 11-15, and group 3
includes SFBs 16-20).

granule — Index of the current granule (O=granule 1, 1=granule 2).
channel — Index of the current channel (O=channel 1, 1=channel 2).
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Output Arguments

®* ppBitStream - Updated bit stream byte pointer. This parameter points to the first available
bit stream buffer byte immediately following the bits generated by the scalefactor Huffman
encoder and sequentially written into the stream buffer. The scalefactor bits are formatted
according to the bit stream syntax given in ISO/IEC 11172-3.

* pOffset - Updated bit stream bit pointer. The pOffset parameter indexes the next available
bit in the next available byte referenced by the updated bit stream buffer byte pointer
*ppBitStream. This parameter is valid within the range of 0 to 7, where 0 corresponds to
the most significant bit and 7 corresponds to the least significant bit.

Returns
®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments. At least one of the pointer arguments is NULL, or
either granule or channel contains an illegal value.

HuffmanEncode MP3 32slu

Prototype

IppStatus ippsHuffmanEncode_MP3_32slu (Ipp32s *pSrclx, Ipp8u
**ppDstBitStream, int *pOffset, IppMP3FrameHeader *pFrameHeader,
IppMP3Sidelnfo *pSidelnfo, int countlLen, int hufSize);

Description

This function applies noiseless (lossless) Huffman encoding to the quantized samples and packs
the output into the bit stream buffer. This function encodes one granule at a time, and therefore
must be called once for each granule of each channel. The resulting bit stream is fully compliant
with ISO/IEC 11172-3.

Input Arguments

®  pSrclx—Pointer to the quantized samples of a granule. The buffer length is 576. Depending
on which type of joint coding has been applied (if any), the coefficient vector might be
associated with either the L, R, M, S, and/or intensity channel of the quantized spectral data.
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ppBitStream — Bit stream byte pointer. The ppBitStream parameter is a double pointer to
the first byte in the bit stream buffer intended to receive the Huffman-encoded spectral
coefficient bits generated by this function. The Huffman-encoded spectral coefficient bits are
sequentially written into the stream buffer starting from the bit indexed by the combination of
byte pointer *ppBitStream and bit pointer pOffset.

pOffset — Bit stream bit pointer. The pOffset parameter indexes the next available bit in
the byte referenced by *ppBitStream. This parameter is valid within the range of 0 to 7,
where 0 corresponds to the most significant bit and 7 corresponds to the least significant bit.

pFrameHeader - Pointer to the 1ppMP3FrameHeader structure for this frame. The
Huffman encoder uses the frame header id field in connection with the side information (as
described below) to compute the Huffman table region boundaries for the bigvals spectral
region. The Huffman encoder ignores all other frame header fields.Only MPEG-1 (id=1) is
supported.

pSidelnfo — Pointer to the 1ppMP3SidelInTfo structure for the current granule and channel.
The structure elements bigvals, pTableSelect[0]-[2], regOCnt, and reglCnt are
used to control coding of spectral coefficients in the bigvalues region. The structure element
cntlTabSel is used to select the appropriate Huffman table for the (-1,0,+1)-valued 4-tuples
in the countl region. Detailed descriptions of all side information elements are given in the
structure definition header file.

countllLen — The countl region length specifier; indicates the number of spectral samples
for the current granule/channel above the bigvals region that can be combined into 4-tuples in
which all elements are of magnitude less than or equal to 1.

hufSize — Huffman coding bit allocation specifier; indicates the total number of bits that are
required to represent the Huffman-encoded quantized spectral coefficients for the current
granule/channel in both the bigvals and countl regions. Whenever necessary, this bit count
should be augmented to include the number of bits required to manage the bit reservoir. For
frames in which the reservoir has reached maximum capacity, the surplus bits are expended
by padding with additional bits the Huffman representation of the spectral samples. The
HufSize result returned by ippsQuantize_MP3_32s_ I reflects these padding
requirements. That is, HuFSize[i]=number of bits required for Huffman symbols + number
of padding bits.

Output Arguments

ppBitStream — Updated bit stream byte pointer. The parameter *ppBitStream points to the
first available bit stream buffer byte immediately following the bits generated by the spectral
coefficient Huffman encoder and sequentially written into the stream buffer. The Huffman
symbol bits are formatted according to the bit stream syntax given in ISO/IEC 11172-3.
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®* pOffset - Updated bit stream bit pointer. The pOffset parameter indexes the next available
bit in the next available byte referenced by the updated bit stream buffer byte pointer
*ppBitStream. This parameter is valid within the range of 0 to 7, where 0 corresponds to
the most significant bit and 7 corresponds to the least significant bit.

Returns
®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments. At least one of the pointer arguments is NULL, or
either granule or channel contains an illegal value.

PackFrameHeader MP3

Prototype

IppStatus ippsPackFrameHeader_ MP3 (1ppMP3FrameHeader *pSrcFrameHeader,
Ipp8u **ppBitStream);

Description

This function packs the content of the frame header into the bit stream. The resulting bit stream is
fully compliant with the syntax specified in ISO 11172-3. This function should be called once per
frame.

Input Arguments

® pSrcFrameHeader — Pointer to the 1ppMP3FrameHeader structure. This structure contains
all the header information associated with the current frame. All structure fields must contain
valid data upon function entry.

®* ppBitStream - Pointer to the encoded bit stream buffer. The ppBitStream parameter is a
double pointer to the first byte in the bit stream buffer intended to receive the packed frame
header bits generated by this function. The frame header bits are sequentially written into the
stream buffer starting from the bit indexed by the combination of byte pointer
*ppBitStream and bit pointer pOffset.
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Output Arguments

ppBitStream — Updated bit stream byte pointer. The parameter *ppBitStream points to the
first available bit stream buffer byte immediately following the packed frame header bits. The
frame header bits are formatted according to the bit stream syntax given in ISO/IEC 11172-3.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments. At least one of the pointer arguments is NULL.

PackSideIlnfo MP3

Prototype
IppStatus ippsPackSidelnfo_MP3 (IppMP3Sidelnfo *pSrcSidelnfo, 1pp8u

**ppBitStream, int mainDataBegin, int privateBits, int *pSrcScfsi,
IppMP3FrameHeader *pFrameHeader);

Description

This function packs the side information into the bit stream buffer. The resulting bit stream is fully
compliant with the syntax specified in ISO 11172-3. This function should be called once per
frame.

Input Arguments

® pSrcSidelnfo — Pointer to the 1ppMP3Side Info structures. This should contain 2 *
channel number of elements. The order is (granule 1, channel 1), (granule 1, channel 2),
(granule 2, channel 1), (granule 2, channel 2). All fields of all set elements should contain
valid data upon function entry.

®* mainDataBegin — Negative bit stream offset, in bytes.The value of the parameter
mainDataBegin is typically the number of bytes remaining in the bit reservoir before the
start of quantization for the current frame. An example of how to compute an appropriate
value for mainDataBegin is given in the MP3 encoder sample program. Header and side
information bytes should be excluded from the mainDataBegin computation. The side
information formatter packs the 9-bit value of mainDataBegin into the main_data_begin
field of the output bit stream.
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privateBits — Depending on the number of channels, the function
ippsPackSidelInfo_MP3 extracts the appropriate number of least significant bits from the
parameter privateBits and packs them into the private_bits field of the output bit
stream. The ISO/IEC 11172-3 bit stream syntax reserves a channel-dependent number of
application-specific (private) bits in the layer 111 bit stream audio data section immediately
following the parameter main_data_begin. See ISO/IEC 11172-3:1993. For dual- and
single-channel streams, respectively, three and five bits are reserved.

pSrcScfsi — Pointer to the scale factor selection information table. This vector contains a
set of binary flags that indicate whether or not scalefactors are shared across granules of a
frame within predefined scalefactor selection groups, For example, bands 0,1,2,3,4,5 form
one group; bands 6,7,8,9,10 form a second group (as defined in ISO/IEC 11172-3 [2]). The
vector is indexed as follows: pDstScfsi[ch][scfsi_band], where ch is the channel index
(O=channel 1, 1=channel 2), and scfsi_band is the scalefactor selection group number (group
0 includes SFBs 0-5, group 1 includes SFBs 6-10, group 2 includes SFBs 11-15, and group 3
includes SFBs 16-20).

pFrameHeader — Pointer to the IppMP3FrameHeader structure. Only MPEG-1 (id=1) is
supported. Upon function entry, the structure fields id, mode, and layer should contain,
respectively, the algorithm id (MPEG-1 or MPEG-2), the mono or stereo mode, and the
MPEG layer specifier. All other *pFrameHeader fields are ignored.

ppBitStream — Pointer to the encoded bit stream buffer. The ppBitStream parameter is a
double pointer to the first byte in the bit stream buffer intended to receive the packed side
information bits generated by this function. The side information bits are sequentially written
into the stream buffer starting from the byte-aligned location referenced by *ppBitStream.

Output Arguments

ppBitStream — Updated bit stream byte pointer. The parameter *ppBitStream points to the
first available bit stream buffer byte immediately following the packed side information bits. The
frame header bits are formatted according to the bit stream syntax given in ISO/IEC 11172-3:1993.

Returns

ippStsNoErr —no error

ippStsBadArgErr — bad arguments. At least one of pointer arguments is NULL, or
mainDataBegin exceeds the range specified in ISO/IEC 11172-3:1993.
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BitReservoirInit MP3

Prototype

IppStatus ippsBitReservoirlnit _MP3(l1ppMP3BitReservoir *pDstBitResv,
IppMP3FrameHeader *pFrameHeader);

Description

This function initializes all elements of the bit reservoir state structure based on the coding
algorithm (MPEG-1 or MPEG-2) and the average per frame bit allocation specified in the frame
header.

Input Arguments

pFrameHeader — Pointer to the IppMP3FrameHeader structure that contains the header
information associated with the current frame. The frame header fields bitRate and id (bit rate
index and algorithm identification, respectively) must contain valid data prior to calling
ippsBitReservoirlnit_MP3 since both are used to generate the bit reservoir initialization
parameters. All other frame header parameters are ignored by the bit reservoir initialization
function. Only MPEG-1 (id=1) is supported.

Output Arguments

pDstBitResv — Pointer to the initialized 1ppMP3BitReservoir state structure. The structure
element BitsRemaining is initialized to 0. The structure element MaxBits is initialized to
reflect the maximum number of bits that can be contained in the reservoir at the start of any given
frame. The appropriate value of MaxBits is directly determined by the selected algorithm
(MPEG-1 or MPEG-2) and the stream bit rate indicated by the rate index parameter
pFrameHeader.bitRate.

Returns
®  ippStsNoErr —no error

®* ippStsBadArgErr — bad arguments. At least one of the pointer arguments is NULL, or the
parameter pFrameHeader . id is not equal to 1.

9-30



Advanced Audio Coding 10

The ISO/IEC 13818-7 MPEG-2 AAC (Advanced Audio Coding) algorithm is an efficient coding
method for surround signals, like 5-channel signals (left, right, center, left surround, right
surround). MPEG-2 AAC supports up to 48 main audio channels with sampling frequency
between 8kHz and 96kHz. MPEG formal tests have shown that for 5-channel audio signals, AAC
satisfies the ITU-R quality requirements and provides slightly better audio quality at 320 kilobits
per second (kbps) than MPEG-2 BC (Backwards Compatibility) provides at 640 kbps. Due to its
high coding efficiency, AAC is a prime candidate for any digital broadcasting system and has been
selected by the DRM (Digital Radio Mondiale) system. AAC will also play a major role for the
delivery of high quality music via the Internet. What’s more, AAC with some modifications, is the
only high-quality audio coding scheme adopted within the MPEG-4 standard, the future “global
multimedia language”.

This chapter provides information on the AAC decoder for Intel XScale® microarchitecture,
including a complete definition of the function calls and data structures that comprise the
Application Programming Interface (API). This is part of the Intel® Integrated Performance
Primitives (Intel® IPP), which is an efficient and portable library for developing a variety of
applications quickly on Intel XScale® microarchitecture.

The AAC decoder API provides a variety of AAC LC decoder functions, including bit stream
unpacking and AAC core decoding functions. This provides customers great flexibility in
configuring the decoder system. See ISO/IEC 13818-7:1997 in Appendix B, “Bibliography”.
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Figure 10-1
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Global Macros
Table 10-1 shows the definitions of global macros.
Table 10-1 Global Macro Definitions
Global Macro Name Definition Notes
I1PP_AAC_FRAME_LEN 1024 The number of data in one frame
IPP_AAC_SF_LEN 120 scalefactor buffer length
I1PP_AAC_GROUP_NUM_MAX 8 maximum group number for one frame
IPP_AAC_TNS_COEF_LEN 60 TNS coefficients buffer length
IPP_AAC_TNS FILT_MAX 8 maximum TNS filter number for one
frame
IPP_AAC_PRED_SFB_MAX 41 maximum prediction scalefactor bands
number for one frame
IPP_AAC_ELT_NUM 16 maximum number of elements for one
program.
IPP_AAC_LFE_ELT_NUM 4 maximum Low Frequency Enhance
elements number for one program
IPP_AAC_DATA ELT_NUM 8 maximum data elements number for one
program
I1PP_AAC_COMMENTS_LEN 256 maximum length of the comment field, in

bytes.

Header Files and Libraries

This section describes the definitions and header files of the Intel® IPP MPEG-2 advanced audio

coding API.

Header Files

User must include the following files at the beginning of the source code before using any
Intel® IPP advanced audio encoder functions:

* ippdefs.h — general header file of Intel® IPP

* ippAC.h - header file of Intel® IPP audio domain
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Binary Libraries

The Intel® IPP MP3 advanced audio coding binary library must be referenced when building an
application that references any of the Intel® IPP MPEG-2 AAC primitives.

Two different versions are provided in the installation package. One is the debug version, which
provides any debug information. The other is the release version, which is used to link in
applications. For example, the release version for the Pocket PC* operating system is:

* ippAC_WMMX40BPPC _r.lib — Release version for the for the Pocket PC operating system
For specific file names, see the appropriate Release Notes for your operating system.

Data Types and Structures

This section describes the data types and structures of the Intel® IPP advanced audio encoder.

ADIF Header

typedef struct {
Ipp32u ADIFId;

/* 32-bit, "ADIF" ASCII code */

int copyldPres; /* copy id flag: O0: off, 1: on */
int originalCopy; /* original bitstream or copy, 0: copy
1: original */
int home;
int bitstreamType; /* bitstream flag: 0: constant rate
bitstream, 1: variable rate bitstream */
int bitRate; /* bit rate. if 0, unknown bit rate */
int numPrgCfgEIt; /* number of program configure elements */
int pADIFBufFul Iness[IPP_AAC_ELT_NUM]; /* buffer fullness */

1pp8u pCopy1d[9];
} 1ppAACADIFHeader ;

ADTS Frame Header

typedef struct {
/* ADTS fixed header */
int id;
int layer;

10-4
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int protectionBit;
int profile;
int samplingRatelndex;
int privateBit;
int chConfig;
int originalCopy;

int home;
int emphasis;

/*
/*
/*
/*
/*
/*

CRC flag 0: CRC on, 1: CRC off */
profile: 0:MP, 1:LC, 2:SSR */
sampling rate index */

private _bit, no use */

channel configure */

original bitstream or copy, O:

copy, 1: original */

/*

not used by I1SO/IEC 13818-7, but used by

14496-3 */

/* ADTS variable header */

int cpRightldBit;
int cpRightldStart;
int framelLen;

int ADTSBufFullness;
int numRawBlock;

/*
/*
/*
/*
/*

copyright id bit */
copyright id start */
frame length in bytes */
buffer fullness */

number of raw data blocks in the frame */

/* ADTS CRC error check, 16bits */

int CRCWord;
} 1ppAACADTSFrameHeader;

Individual Channel Side Information
typedef struct {

/*

/* unpacked from the bitstream */

CRC-check word */

reserved bit */
window sequence flag */
window shape flag, O: sine window, 1: KBD

maximum effective scalefactor bands */
scalefactor grouping information */
prediction data present flag for one

ame, O: prediction off, 1: prediction on */
prediction reset flag, 0: reset off, 1:

prediction reset group number */

int icsReservedBit; /*
int winSequence; /*
int winShape; /*
window */
int maxSfb; /*
int sfGrouping; /*
int predDataPres; /*
fr
int predReset; /*
reset on */
int predResetGroupNum; /*
1pp8u pPredUsed[IPP_AAC_PRED_SFB_MAX+3];

/* prediction flag buffer for

each scalefactor band: 0: off, 1: on buffer

le

/* decoded from the above info */

ngth 44 bytes, 4-byte align */
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int numWinGrp; /* group number */
int pWinGrpLen[IPP_AAC_GROUP_NUM_MAX]; /* buffer for number of
windows in each group */

} IppAACIcsiInfo;

AAC Scalable Main Element Header

typedef struct{

int windowSequence; //the windows is short or long type

int windowShape; //what window is used for the right hand//part of this
analysis window

int maxSfb; //number of scale factor band transmitted

int sfGrouping; //grouping of short spectral data

int numWinGrp; //window group number
int pWinGrpLen[IPP_AAC_GROUP_NUM_MAX]; //length of every group
int msMode; // MS stereo flag: O - none, 1 - different // for every sfb, 2 - all
Ipp8u (*ppMsMask) [1PP_AAC_SF MAX];//if MS"s used in one sfb, when msMode ==
IppAACTNnsInfo pTnsinfo[[IPP_AAC_CHAN_NUM];//TNS structure for two channels
IppAACLtpInfo pLtpinfo[IPP_AAC_CHAN_NUM];//LTP structure for two channels
}1ppAACMainHeader;

AAC Scalable Extension Element Header

typedef struct{
int msMode; //0,non; 1,part; 2,all
int maxSfb; // number of scale factor band for extension layer
Ipp8u (*ppMsMask) [ IPP_AAC_SF_MAX]; //if ms is used
IppAACTnsInfo pTnsinfo[[1PP_AAC_CHAN_NUM]; // TNS structure for Stereo
int pDiffControlLr[1PP_AAC_CHAN_NUM][1PP_AAC_PRED_SFB_MAX];
//FSS information for stereo
}1ppAACExtHeader;

TNS Structure for One Layer

typedef struct{

int tnsDataPresent;

int pTnsNumFil€[1PP_AAC_GROUP_NUM_MAX];
// TNS number filter buffer
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int pTnsFiltCoefRes[IPP_AAC_GROUP_NUM_MAX];
// TNS coef resolution flag
int pTnsRegionLen[IPP_AAC_TNS_FILT_MAX];
// TNS fTilter length
int pTnsFiltOrder[IPP_AAC_TNS_FILT_MAX];
// TNS fTilter order
int pTnsDirection[IPP_AAC_TNS_FILT_MAX];
// TNS FTilter direction flag
int pTnsCoefCompress[1PP_AAC_GROUP_NUM_MAX];
// The most significant bit of the coefficients of the //noise shaping
filter in window w is omitted or not
Ipp8s pTnsFiltCoef[IPP_AAC_TNS_COEF_LEN];
// Coefficients of one noise shaping filter applied to //window w
HIppAACTnsiInfo;

LTP structure

typedef struct{
int ItpDataPresent; //if Itp is used
int ItpLag; //the optimal delay from 0 to 2047
Ippl6s 1tpCoeT; //indicate the LTP coefficient
int pLtpLongUsed[IPP_AAC_MAX_LTP_SFB]; // if long block use Itp
int pLtpShortUsed[1PP_AAC_WIN_MAX]; //if short block use Itp
int pLtpShortLagPresent[I1PP_AAC_WIN_MAX];
//if short lag is transmitted
int pLtpShortLag[IPP_AAC_WIN_MAX];
//relative delay for short window
HppAACLtplInfo;

Channel Pair Element

typedef struct {
int commonWin; /* common window flag, O0: off, 1: on */
int msMaskPres; /* MS stereo mask present flag */

Ipp8u pMsUsed[ IPP_AAC_SF_LEN]; /* MS stereo flag buffer for each
scalefactor band */

} IppAACChanPairElt;
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Channel Information
typedef struct {

int tag;

int id; /* element id */

int samplingRatelndex; /* sampling rate index */

int predSfbMax; /* maximum prediction scalefactor bands */

int preWinShape; /* previous block window shape */

int winLen; /* 128: if short window, 1024: others */

int numWin; /* 1 for long block, 8 for short block */

int numSwb; /* decided by sampling frequency and block type */

/* unpacking from the bitstream */

int globGain; /* global gain */
int pulseDataPres; /* pulse data present flag, 0: off, 1: on */
int tnsDataPres; /* TNS data present flag, 0: off, 1: on */

int gainContrDataPres; /* gain control data present flag, 0: off, 1: on */

/* icsinfo pointer */
IppAACIcsinfo *plcsinfo; /* pointer to IppAACIcsinfo structure */

/* channel pair pointer */
IppAACChanPairElIt *pChanPairElt;/* pointer to IppAACChanPairElt structure
*/

/* section data */
Ipp8u pSectCb[IPP_AAC_SF LEN]; /* section code book buffer */

Ipp8u pSectEnd[IPP_AAC_SF_LEN]; /* the end of scalefactor offset in each
section */

int pMaxSect[1PP_AAC_GROUP_NUM_MAX];/* maximum section number for each
group */

/* TNS data */

int pTnsNumFiIt[1PP_AAC_GROUP_NUM_MAX]; /* TNS filter number buffer */

int pTnsFiltCoefRes[IPP_AAC_GROUP_NUM_MAX]; /* TNS coefficients resolution
flag */

10-8



Advanced Audio Coding 10

int pTnsRegionLen[IPP_AAC_TNS_FILT_MAX];/* TNS filter length */
int pTnsFiltOrder[IPP_AAC_TNS_ FILT_MAX];/* TNS filter order */
int pTnsDirection[IPP_AAC_TNS_FILT_MAX];/* TNS filter direction
flag */
}1ppAACChaninfo;

MPEG-2 AAC Primitives

In the following sections, maxSfb means number of scalefactor bands transmitted per group. This
is unpacked from the bit stream. numSwb means number of scalefactor window bands for short
block or number of scalefactor window bands for long block. This is calculated according to the
sampling rate and the block type.

See clause 8.3.1 of ISO/IEC 13818-7:1997.

UnpackADIFHeader AAC

Prototype

IppStatus ippsUnpackADIFHeader_ AAC (Ipp8u **ppBitStream,
IppAACADIFHeader *pADIFHeader, IppAACPrgCfgElt *pPrgCfgElt, int
prgCfgEltMax)

Description

Gets the AAC ADIF format header, including program configuration elements from the input bit
stream. See Table 6.2, and 6.21. of ISO/IEC 13818-7:1997.

Input Arguments
®* ppBitStream - double pointer to the current byte before the ADIF header
®* prgCfgEltMax — the maximum program configure element number

Output Arguments
®* ppBitStream - double pointer to the current byte after the ADIF header
® pADIFHeader — pointer to the 1ppACCAD I FHeader structure
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®  pPrgCfgEIt — pointer to the 1ppAACPrgCFfgE Lt structure. There must be prgCfgEltMax
elements in the buffer.

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

— At least one of the following pointers: ppBitStream, pADIFHeader, pPrgCfgElt
*ppBitStreamis NULL.

— prgCfgEltMax exceeds [1, 16]
®  ippStsAacPrgNumErr - the decoded pADIFHeader->numPrgCfgElt >

prgCfgEltMax.
% NOTE. pADIFHeader->numPrgCfgElt is the number directly unpacked from
= bit stream plus 1.

prgCfgEItMax is the number of the program configuration elements that the
user wants to support. The valid range is [1, 16]

UnpackADTSFrameHeader AAC

Prototype

IppStatus ippsUnpackADTSFrameHeader_ AAC (1pp8u **ppBitStream,
IppAACADTSFrameHeader *pADTSFrameHeader)

Description

Gets ADTS frame header from the input bit stream. If the CRC word is applied, the first byte of
the 16-bit CRC word is stored in pADTSFrameHeader->CRCWord[15:8] and the second byte is
stored in pADTSFrameHeader->CRCWord[7:0]. It does not check whether the header is corrupt.

Input Arguments
ppBitStream — double pointer to the current byte
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Output Arguments
* ppBitStream - double pointer to the current byte after unpacking the ADTS frame header
® pADTSFrameHeader — pointer to the 1ppAACADTSFrameHeader structure

Returns
®  ippStsNoErr —no error

®* ippStsBadArgErr —bad arguments. At least one of the following pointers: ppBitStrean,
*ppBitStream, or pADTSFrameHeader is NULL.

DecodePrgCfgElt AAC

Prototype

IppStatus ippsDecodePrgCfgElt _AAC (1pp8u **ppBitStream, int *pOffset,
IppAACPrgCfgEIt *pPrgCfgEIt)

Description

Gets program configuration element from the input bit stream. See clause 8.5 and Table 6.21 of
ISO/IEC 13818-7.

Input Arguments
®* ppBitStream - double pointer to the current byte

®* pOffset — pointer to the bit position in the byte pointed by *ppBitStream.
Valid within 0 to 7. 0: MSB of the byte, 7: LSB of the byte

Output Arguments
®* ppBitStream - double pointer to the current byte after decoding the program configuration
element

®* pOffset — pointer to the bit position in the byte pointed by *ppBitStream.
Valid within 0 to 7. 0: MSB of the byte, 7: LSB of the byte.

®  pPrgCfgEIt — pointer to 1ppAACPrgCfgEIt structure

Returns
®  ippStsNoErr —no error
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® ippStsBadArgErr — bad arguments

— At least one of the following pointers: ppBitStream, pOffset, pPrgCfgElt,
*ppBitStreamis NULL.

— *pOffset exceeds [0, 7]

DecodeChanPairElt AAC

10-12

Prototype

IppStatus ippsDecodeChanPairElt_AAC (Ipp8u **ppBitStream, int *pOffset,
IppAACIcsinfo *plcsinfo, IppAACChanPairElt *pChanPairElt, int
predSfbMax)

Description

Gets channel_pair_element from the input bit stream. Individual_channel_stream is not
included. If common_window flag decoded from the input bit stream is 0, all members of
plcsinfo and pChanPairElt are not changed except for pChanPai rElt->commonWin. See
clause 8.3 and Table 6.10, 6.11 of ISO/IEC 13818-7:1997.

Input Arguments
®* ppBitStream - double pointer to the current byte

®* pOffset — pointer to the bit position in the byte pointed by *ppBitStream.
Valid within 0 to 7. 0: MSB of the byte, 7: LSB of the byte

®*  predSfbMax — maximum prediction scalefactor bands. For LC profile, set
predSfbMax = 0O

Output Arguments
* ppBitStream - double pointer to the current byte after decoding the channel pair element

®* pOffset — pointer to the bit position in the byte pointed by *ppBitStream.
Valid within 0 to 7. 0: MSB of the byte, 7: LSB of the byte
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® plcsinfo — pointer to IppAACIcsInfo structure. If plcsInfo->predDataPres = 0, set
plcsinfo->predReset = 0. Only the first plcsInfo->numWinGrp elements in
plcsinfo-> pWinGrpLen are meaningful. Some members of the structure must not be
changed, as shown in Table 10-2.

Table 10-2 Unchanged Members of plcsinfo
Members Conditions
STfGrouping plcsInfo->winSequence = 2
predResetGroupNum plcsinfo->predDataPres == 0 ||

plcsinfo->predReset == 0
pPredUsed[sfb] plcsinfo->predDataPres == 0

® pChanPairElt - pointerto IppAACChanPai rElt structure. Some members of the structure
must not be changed, as shown in Table 10-3.

Table 10-3 Unchanged Members of pChanPairElt
Members Conditions
pMsUsed[sTb] pChanPairElt->msMaskPres 1= 1
Returns

®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the following pointers: ppBitStream, pOffset, *ppBitStream,
plcsinfo or pChanPairElt is NULL.

— *pOffset exceeds [0, 7]
— predSfbMax <0
— predSfbMax > 41 (maximum value for all sampling frequency in main profile)

® ippStsAacMaxsfbErr — plcsInfo->maxSfb decoded from bit stream greater than 51
(maximum scalefactor band for all sampling frequency)
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NoiselessDecoder LC AAC

Prototype

IppStatus ippsNoiselessDecoder LC _AAC (Ipp8u **ppBitStream, int
*pOffset, int commonWin, IppAACChaninfo *pChaninfo, Ippl6s
*pDstScalefactor, Ipp32s *pDstQuantizedSpectralCoef, 1pp8u
*pDstSTbCb, Ipp8s *pDstTnsFiltCoef)

Description

Decodes all the data for one channel, including scalefactors/intensity positions, spectral
coefficients, TNS coefficients and associated side information for LC profile. User must set
pChanInfo->plcsinfo, pChanlnfo->samplingRatelndex, pChanlnfo->predSftbMax to
correct pointer/values before calling this function.

Input Arguments
®* ppBitStream - double pointer to the current byte
®  pOffset - pointer to the offset in one byte

® pChanlnfo — pointer to the channel information 1ppAACChanInfo structure. Members
samplingRateIndex, predSfbMax are treated as input.

®  commonWin — common window indicator

Output Arguments
®* ppBitStream - double pointers to bit stream buffer
®* pOffset — pointer to the offset in one byte

® pChanlnfo - pointer to the channel information. 1ppAACChanInfo structure. Denote r
plcsinfo as pChanInfo->plcsinfo as shown in Table 10-4.

Table 10-4 Input/Output Members List of pChanInfo
Member Output
Tag Not used.
id Not used.
preWinShape Not used.
pChanPairElt Not used.
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Table 10-4

Input/Output Members List of pChanlnfo (continued)

Member
samplingRatelndex
predSfbMax
winLen

numwWin

numSwb

globGain
pulseDataPres
tnsDataPres
gainContrDataPres
pMaxSect

pSectCh

pTnsRegionLen

pTnsFiltOrder

pTnsDirection

Output
As input. Not changed.
As input. Must = 0. Not changed.

As output. Set to 128: if decoded plcsinfo->winSequence is short
block,

1024: others

As output. Set to 8: if decoded plcsinfo->winSequence is short block,
1: others

As output. Set to the maximum number of scalefactor window bands
in each group according to samplingRatelndex and

plcsinfo->winSequence. See Table 8.4-8.1 of ISO/IEC
13818-7:1997.

As output. Unpacked from bit stream.

As output. Pointer to the maximum of sections number in each
group. Only plcsinfo->numWinGrp elements in the buffer are
meaningful.

As output. Pointer to the section codebook. Only pMaxSect[g]
elements are stored for each group. There is no space between the
sequence groups.

As output. Pointer to the length of the region (in units of scalefactor
bands) to which one filter is applied in each window.

As output. Pointer to the order of the temporal noise shaping filter
applied to each window.

As output. Pointer to the token which indicates whether the filter is
applied in upward or downward direction: 0 for upward and 1 for
downward.
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Table 10-4 Input/Output Members List of pChanlnfo (continued)
Member Output
plcsinfo As input if commonWin==1.
As output if commonWin==0. If plcsinfo->predDataPres == 0, set
plcsinfo->predReset = 0. Only the first plcsinfo->numWinGrp
elements in plcsinfo-> pWinGrpLen are meaningful. Under specific
conditions, some members of the structure must remain unchanged.
Unchanged Members Conditions
sfGrouping plcsinfo->winSequence != 2
predResetGroupNum plcsinfo->predDataPres == 0 ||
plcsinfo->predReset ==
pPredUsed[sfh] plcsinfo->predDataPres ==
* pDstScalefactor — pointer to the scalefactor or intensity position buffer, buffer length >=
120. Only maxSfb elements are stored for each group. There is no space between sequence
groups.
®* pDstQuantizedSpectralCoef - pointer to the quantized spectral coefficients data. For
short block, the coefficients are interleaved by scalefactor window bands in each group.
Buffer length >= 1024.
® pDstSTbhCb - pointer to the scalefactor band codebook. Buffer length must >= 120. Store
maxS¥b elements for each group. There are no space between the sequence groups.
®* pDstTnsFiltCoef - pointer to TNS coefficients. Buffer length must >= 60. The store
sequence is TNS order elements for each filter for each window. The elements are not
changed if the corresponding TNS order is zero.
Returns
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ippStsNoErr — no error
ippStsBadArgErr — bad arguments

— At least one of the following pointers: ppBitStream, pOffset, pChanlinfo,
pDstScalefactor, pDstQuantizedSpectralCoef, pDstSTbCb,
pDstTnsFiltCoef *ppBitStream is NULL

— pChaninfo->plcsinfois NULL

— commonWin exceeds [0, 1]

— *pOffset exceeds [0, 7]

— pChanlinfo->sampl ingRate Index exceeds [0, 11]
— pChanlinfo->predSfbMax !=0

ippStsAacMaxsTbErr — pChanInfo->plcsiInfo->maxSfb decoded from bit stream
greater than pChan Info->numSwb
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® ippStsAacSTvalErr — scalefactor value exceeds normal range error. *pDstScalefactor
exceeds [0, 255]

® ippStsAacSectCbErr Codebook pointed by pChanlnfo->pSectCb is illegal.
*(pChanlInfo->pSectCh)==12, 13. If current channel is not the right channel of the channel
pair element, *pSectCb = 14, 15 are also illegal, but we do not check these conditions.

® ippStsAacPlIsDataErr — The pChanInfo->plcsInfo->winSequence indicates short
sequence and pChanInfo->pulseDataPres indicates pulse data present. Or the start
scalefactor band for pulse data >= pChanInfo->numSwb. Or Pulse data position offset >=
pChaninfo->winLen.

® ippStsAacGainCtrErr — pChanlnfo->gainContrDataPres is decoded as 1 that means
gain control data is present. Gain control data is not currently supported.

* ippStsAacCoefValErr — Decoded quantized spectral coefficients value pointed by
pDstQuantizedSpectralCoef exceeds [-8191, 8191].

® ippStsAacSectErr — Decoded section number in some group is greater than maxS¥b.

® ippStsAacTnsOrderErr — Decoded TNS order is greater than the allowed maximum order
of LC profile: 7 for short block, 12 for long block.

DecodeDatStrEIt AAC

Prototype

IppStatus ippsDecodeDatStrEIt_AAC (Ipp8u **ppBitStream, int *pOffset,
int *pDataTag, int *pDataCnt, Ipp8u * pDstDataElt)

Description

Gets data_stream_element from the input bit stream. See clause 8.6 and Table 6.20 of ISO/IEC
13818-7:1997.

Input Arguments
®* ppBitStream - double pointer to the current byte
®* pOffset — pointer to the bit position in the byte pointed by *ppBitStream.

Valid within 0 to 7. 0: MSB of the byte, 7: LSB of the byte.
Output Arguments
®* ppBitStream - double pointer to the current byte after the decode data stream element
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®* pOffset — pointer to the bit position in the byte pointed by *ppBitStream.
Valid within 0 to 7. 0: MSB of the byte, 7: LSB of the byte.

®* pDataTag — pointer to element_instance_tag. See Table 6.20 of ISO/IEC 13818-7:1997
® pDataCn — pointer to the value of length of total data in bytes

* pDstDataElt — pointer to the data stream buffer that contains the data stream extracted from
the input bit stream. There are 512 elements in the buffer pointed by pDstDataEl t.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the following pointers: ppBitStream, pOffset, *ppBitStream,
pDataTag, pDataCnt or pDstDataElt is NULL.

— *pOffset exceeds [0, 7]

DecodeFillEIt AAC
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Prototype

IppStatus ippsDecodeFilIEIt_AAC (Ipp8u **ppBitStream, int *pOffset,
int *pFillCnt, 1pp8u * pDstFillEITL)

Description

Gets the fill element from the input bit stream. See clause 8.7 and Table 6.22 of ISO/IEC
13818-7:1997.

Input Arguments
®* ppBitStream - pointer to the pointer to the current byte

®* pOffset — pointer to the bit position in the byte pointed by *ppBitStream.
Valid within 0 to 7. 0: MSB of the byte, 7: LSB of the byte.

Output Arguments
®* ppBitStream - pointer to the pointer to the current byte after the decode fill element

®* pOffset - pointer to the bit position in the byte pointed by *ppBitStream.
Valid within 0 to 7. 0: MSB of the byte, 7: LSB of the byte.
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®* pFillCnt - pointer to the value of the length of total fill data in bytes

* pDstFillEIt- pointer to the fill data buffer whose length must be equal to or greater than
270

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the following pointers: ppBitStream, pOffset, *ppBitStream,
pFillCntor pDstFillEITtis NULL.

— *pOffset exceeds [0, 7]

Quantinv_ AAC 32s 1

Prototype

IppStatus ippsQuantinv_AAC _32s 1 (lIpp32s *pSrcDstSpectralCoef, const
Ippl6és *pScalefactor, int numWinGrp, const int *pWinGrpLen, int
maxSfb, const Ipp8u *pSfbCb, int samplingRatelndex, int winLen)

Description

Inverse quantize the Huffman symbols for current channel. The formula is shown as below
equation. See clause 10 of ISO/IEC 13818-7:1997.

1
¢ 2 (pScalefactor[sfb] —100)
pSrcDst[i] = sign(pSrcDst[i]) * (pSrcDst[i])® * 2

Input Arguments

® pSrcDstSpectralCoef — pointer to the input quantized coefficients. For short block the
coefficients are interleaved by scalefactor window bands in each group. Buffer length must
>=1024.

®* pScalefactor — pointer to the scalefactor buffer. Buffer length must >= 120.

®  numWinGrp — group number

®  pWinGrpLen — pointer to the number of windows in each group. Buffer length must >= 8.
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maxSTb — max scalefactor bands number for the current block

pSfbCb — pointer to the scalefactor band codebook, buffer length must >= 120. Only maxSfb
elements for each group are meaningful. There are no spaces between the sequence groups.

sampl ingRateIndex — sampling rate index. Valid in [0, 11]. See Table 6.5 of ISO/IEC
13818-7:1997.

winLen — the data number in one window

Output Arguments

pSrcDstSpectralCoef — pointer to the destination inverse quantized coefficient in Q13.18
format . For short block, the coefficients are interleaved by scalefactor window bands in each
group. Buffer length must >= 1024. The maximum error of output pSrcDstSpectralCoef
[i] is listed in Table 10-5.

Table 10-5 Computation Error List for pSrcDstSpectralCoef
Output Conditions
max(error( Input abs( Output abs(
pSrcDstSpectralCoef [i])) pSrcDstSpectralCoef [i]) pSrcDstSpectralCoef[i])
3 <= 128 < 2" 29
3 129~8191 <=2 " 25
7 129~8191 < 27" 29
Returns
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ippStsNoErr —no error

ippStsBadArgErr — bad arguments

— At least one of the following pointers: pSrcDstSpectralCoef, pScalefactor,
pWinGrpLen or pSTbCb is NULL.

— If short block numWinGrp exceeds [1, 8]

— If long block, numWinGrp =1

— maxSfb exceed [0, 51]

— samplingRatelndex exceeds [0, 11]

— winLen is neither 1024 nor 128

ippStsAacCoefValErr — input coefficients value pointed by pSrcDstSpectralCoef

exceeds[-8191, 8191]

ippStsAacMaxsFbErr — the calculated scalefactor band index exceeds the numSwb in each

window
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DecodeMsStereo AAC 32s 1

Prototype

IppStatus ippsDecodeMsStereo_AAC_32s 1 (Ipp32s *pSrcDstL, 1pp32s
*pSrcDstR, int msMaskPres, const Ipp8u *pMsUsed, Ipp8u *pSfbCb, int
numWinGrp, const int *pWinGrpLen, int maxSfb, int samplingRatelndex,
int winLen)

Description

MS stereo process for pair channels. This also performs the invert_intensity(group, sfb)
function and stores the values in the pSfbCb buffer. If invert_intensity(group, sfb) =-1,
and if *pSTfbCb = INTERITY_HCB, let *pSfbCb = INTERITY_HCB2; else if *pSfhCb =
INTERITY_HCB2, let *pSTbCb = INTERITY_HCB. Only when MS stereo flag is on, perform
operation on pSrcDstL[i] and pSrcDstR[i] as described in the below formula below. See
clause 12 of ISO/IEC 13818-7:1997.

pSrcDstL'[i] = pSrcDstL[i]+ pSrcDstR[i],
pSrcDstR'[i] = pSrcDstL[i]— pSrcDstRi].

Input Arguments

®  pSrcDstL — pointer to left channel data in Q13.18 format. For short block, the coefficients
are interleaved by scalefactor window bands in each group. Buffer length must >= 1024.
pSrcDstL must be 8-byte aligned.

®  pSrcDstR - pointer to right channel data in Q13.18 format. For short block, the coefficients
are interleaved by scalefactor window bands in each group. Buffer length must >= 1024.
pSrcDstR must be 8-byte aligned.

®* msMaskPres — MS stereo mask flag. 0: MS off, 1: MS on. 2: MS all bands on.
®* pMsUsed — pointer to the MS Stereo flag buffer. Buffer length must >= 120.

®* pSftbCbPointer to the scalefactor band codebook, buffer length must >= 120. Store maxSfb
elements for each group. There are no space between the sequence groups.

®  numWinGrp — group number
®  pWinGrpLen — pointer to the number of windows in each group. Buffer length must >= 8
®* maxSfb — max scalefactor bands number for the current block
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10-22

sampl ingRate Index — sampling rate index. Valid in [0, 11]. See Table 6.5 of ISO/IEC
13818-7:1997.
winLen — the data number in one window

Output Arguments

pSrcDstL — pointer to left channel data in Q13.18 format. For short blocks, the coefficients
are interleaved by scalefactor window bands in each group. Buffer length must >= 1024.
pSrcDstL must be 8-byte aligned.

pSrcDstR - pointer to right channel data in Q13.18 format. For short blocks, the coefficients
are interleaved by scalefactor window bands in each group. Buffer length must >= 1024.
pSrcDstR must be 8-byte aligned.

pSfbCh- pointer to the scalefactor band codebook. If invert_intensity

group, sfb) =-1, and if *pSFbCb = INTERITY_HCB, let *pSfbCb = INTERITY_HCBZ;
else if *pSTbCb = INTERITY_HCB2, let *pSfbCb = INTERITY_HCB. Buffer length must >=
120. Store maxSfb elements for each group. There is no space between the sequence groups.

Returns

ippStsNoErr —no error

ippStsBadArgErr — bad arguments

— At least one of the following pointers: pSrcDstL, pSrcDstR, pMsUsed, pWinGrpLen,
pSTbCb is NULL.

— pSrcDstL or pSrcDstR is not 8-byte aligned

— For short blocks, numwinGrp exceeds [1, 8]

— For long blocks, numWinGrp =1

— maxStb exceeds [0, 51]

— msMaskPres exceeds [1, 2]

— samplingRatelndex exceeds [0, 11]

— winLen is neither 1024 nor 128

ippStsAacMaxsTbErr —the calculated scalefactor band index exceeds the numSwb in each

window
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DecodelsStereo AAC 32s

Prototype

IppStatus ippsDecodelsStereo_AAC_32s (const Ipp32s *pSrcL, 1pp32s
*pDstR, const lppl6s *pScalefactor, const lpp8u *pSfbCb, int
numWinGrp, const int *pWinGrpLen, int maxSfb, int samplingRatelndex,
int winLen)

Description

Intensity stereo process for pair channels. Only the pSfbCb[sfb] indicates intensity stereo on for
that scalefactor band. Perform operation on pSrcL[i], pDstR[ ] as described in the formula
below. invert_intensity(g, sfb) isnotused in the formula, because it is already decoded
and stored in pSTbCb[sTb] in the MS stereo process primitive. Refer to clause 12 of ISO/IEC
13818-7:1997.

1 pScalefactor[sfb]
pDstR[i] = pSrcL[i]*is_intensity(g, sfb)*2

Input Arguments

® pSrcL - pointer to left channel data in Q13.18 format. For short block, the coefficients are
interleaved by scalefactor window bands in each group. Buffer length must >= 1024. pSrcL
must be 8-byte aligned.

® pScalefactor — pointer to the scalefactor buffer. Buffer length must >= 120.

® pSTbCb - pointer to the scalefactor band codebook, buffer length must >= 120. Store maxSfb
elements for each group.There are no space between the sequence groups.

®  numWinGrp — group number
® pWinGrpLen — pointer to the number of windows in each group. Buffer length must >= 8.
®* maxSfbMax — scalefactor bands number for the current block

* samplingRatelndex —sampling rate index. Valid in [0, 11]. See Table 6.5 of ISO/IEC
13818-7:1997.

® winLen —the data number in one window
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Output Arguments

* pDstR - pointer to right channel data in Q13.18 format. For short block, the coefficients are
interleaved by scalefactor window bands in each group. Buffer length must >= 1024. pDstR
must be 8-byte aligned.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr - bad arguments

— At least one of the following pointers: pSrcL, pDstR, pWinGrpLen, pScalefactor,
pSfbCb is NULL. If pSrcL, pDstR is not 8-byte aligned.

— If short block, numWinGrp exceeds [1, 8]
— If long block, numWinGrp =1
— maxSTb exceeds [0, 51]
— samplingRatelndex exceeds [0, 11]
— winLen is neither 1024 nor 128
®* ippStsAacMaxsTbErr - the calculated scalefactor band index exceeds the numSwb in each
window

DeinterleaveSpectrum AAC 32s
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Prototype

IppStatus ippsDeinterleaveSpectrum_AAC_32s (const Ipp32s *pSrc, Ipp32s
*pDst, int numWinGrp, const int *pWinGrpLen, int maxSfb, int
samplingRatelndex, int winLen)

Description
Deinterleaves the coefficients for short block. See clause 8.3.5 of ISO/IEC 13818-7:1997.

Input Arguments

® pSrc - pointer to source coefficients buffer. The coefficients are interleaved by scalefactor
window bands in each group. Buffer length must >= 1024. pSrc must be 8-byte aligned.

®  numWinGrp — group number

® pWinGrpLen — pointer to the number of windows in each group. Buffer length must >= 8
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* maxSfbMax — scalefactor bands number for the current block

¢ samplingRatelndex —sampling rate index. Valid in [0, 11]. See Table 6.5 of ISO/IEC
13818-7:1997.

® winLen —the data number in one window

Output Arguments

®* pDst - pointer to the output of coefficients. Data sequence is ordered in
pDst[w*128+sfh*sfbWidth[sfb]+i]. Where w is window index, sfb is scalefactor band
index, sFfbwidth is the scalefactor band width table, i is the index within scalefactor band.
Buffer length must >= 1024. pDst must be 8-byte aligned.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the following pointers: pSrc, pDst,pWinGrpLen is NULL.
— Either pSrc or pDst are not 8-byte aligned
— numWinGrp exceeds [1, 8]
— maxSTb exceeds [0, 51]
— samplingRatelndex exceeds [0, 11]
— winLen is not 128

* ippStsAacMaxsTbErr - the calculated scalefactor band index exceeds the numswb in each
window

DecodeTNS AAC 32s 1

Prototype

IppStatus ippsDecodeTNS_AAC _32s_1 (Ipp32s *pSrcDstSpectralCoefs, const
int *pTnsNumFilt, const int *pTnsRegionLen, const int *pTnsFiltOrder,
const int *pTnsFiltCoefRes, const Ipp8s *pTnsFiltCoef, const int
*pTnsDirection, int maxSfb, int profile, int samplingRatelndex, int
winLen)
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Description

Decoding process for Temporal Noise Shaping that controls the temporal shape of the quantization
noise within each window of the transform. The decoding process for Temporal Noise Shaping is
done separately on each window of the current frame by applying the all-pole filtering to selected
regions of the spectral coefficients. This function supports LC profile only.

Input Arguments
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pSrcDstSpectralCoefs — pointer to the input spectral coefficients to be filtered by the
all-pole filters in Q13.18 format. There are 1024 elements in the buffer pointed by
pSrcDstSpectralCoefs.

pTnsNumFi I't — pointer to the number of noise shaping filters that are used for each window
of the current frame. There are 8 elements in the buffer pointed by pTnsNumFi It which are
arranged as follows:

pTnsNumFi l't[w]: the number of noise shaping filters used for window w, w=0 to
numwin-1.

pTnsRegionLen — pointer to the length of the region (in units of scalefactor bands) to which
one filter is applied in each window of the current frame. There are 8 elements in the buffer
pointed by pTnsRegionLen, which are arranged as follows:
pTnsRegionLen[i]: the length of the region to which filter £i It is applied in window
w-1
w,i= ) PTnsNumFi Ftil+Fi I't, w=0
j=0

to numWin-1, Filt=0 to pTnsNumFilt[w]-1.
pTnsFiltOrder — pointer to the order of one noise shaping filter applied to each window of
the current frame. There are 8 elements in the buffer pointed by pTnsFi 1tOrder, which are
arranged as follows:
pTnsFiltOrder[i]: the order of one noise shaping filter i It, which is applied to
window

w-1
w, i= ZansNumFi Iqj]+Filt, w=0

J=0
to numWin-1, Filt=0 to pTnsNumFilt[w]-1.
pTnsFi lItCoefRes — pointer to the resolution (3 bits or 4 bits) of the transmitted filter
coefficients for each window of the current frame. There are 8 elements in the buffer pointed
by pTnsFi I'tCoefRes, which are arranged as follows:
pTnsFiltCoefRes[w]: the resolution of the transmitted filter coefficients for window
w, w=0 to numWin-1.
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pTnsFiltCoef — pointer to the coefficients of one noise shaping filter applied to each
window of the current frame. There are 60 elements in the buffer pointed by pTnsFi 1'tCoef,
which are arranged as follows:

pTnsFiltCoef[i], pTnsFiltCoef[i+1], ..,

pTnsFiltCoef[i+order-1]: The coefficients of one noise shaping filter £i lt, which is
applied to window w. The order is the order of the noise shaping filter fi It as applied to
window w, w=0 to numWin-1, filt=0 to pTnsNumFi I t[w]-1. For example,
pTnsFiltCoef[0], pTnsFiltCoef[1], ..,

pTnsFiltCoef[order0-1] are the coefficients of the noise shaping filter 0, which is
applied to window 0 if they exist. If so, pTnsFiltCoef[order0], pTnsFiltCoef[order0+1], ...,

pTnsFiltCoef[orderO+orderl-1] are the coefficients of the noise shaping filter 1
applied to window O if they exist, and so on. order0 is the order of the noise shaping filter 0
applied to window 0, and order1 is the order of the noise shaping filter 1 applied to window
0. After window 0 is processed, process window 1, then window 2 until numWin windows are
all processed.

pTnsDirection — pointer to the token which indicates whether the filter is applied in
upward or downward direction: 0 for upward and 1 for downward. There are 8 elements in the
buffer pointed by pTnsDirection which are arranged as follows:

pTnsDirection[i]: the token indicating whether the filter fi It is applied in upward or
downward direction to window

=
LN

TnsNumFi 1]
wi= &P WL fire, w=0 to numWin-1, Filt=0

™
1l
o

to pTnsNumFilt[w]-1.

maxS¥b — the number of scalefactor bands transmitted per window group of the current frame
profile - the profile index from Table 7.1 in ISO/IEC 13818-7:1997

sampl ingRate Index — the index which indicates the sampling rate of the current frame
winLen — the data number in one window

Output Arguments

pSrcDstSpectralCoefs — pointer to the output spectral coefficients after filtering by the
all-pole filters in Q13.18 format. See Table 10-6 for the computation error compared with the
double precision data.
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Table 10-6 Computation Error List for pSrcDstSpectralCoefs
MAX(error(pSrcDstSpectralCoefs[i])) Conditions
4095 8 == numWin
32767 1 == numWin
Returns
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ippStsNoErr —no error
ippStsBadArgErr — bad arguments

— At least one of the following pointers: pSrcDstSpectralCoefs, pTnsNumFi I t,
pTnsRegionLen, pTnsFiltOrder, pTnsFiltCoefRes, pTnsFiltCoeT, or
pTnsDirection is NULL.

— maxSfb < 0 or maxSfb > numSwb

— profile!=1

— samplingRatelndex exceeds [0, 11]
— winLen!=128 and winLen!=1024

ippStsAacTnsNumFi ItErr — for a short window sequence, pTnsNumFi I't[w] exceeds
[0, 1]; For long window sequence, pTnsNumFilt[w] exceeds [0, 3], w=0 to
numWin-1.

ippStsAacTnsLenErr — *pTnsRegionLen exceeds [0, numSwb]

ippStsAacTnsOrderErr — for short window sequence, *pTnsFi ltOrder exceeds [0,
7]; For long window sequence, *pTnsFiltOrder exceeds [0, 12]

ippStsAacTnsCoefResErr — pTnsFi l'tCoefRes[w] exceeds [3, 4], w=0 to numWin-1
ippStsAacTnsCoefErr — *pTnsFi I tCoef exceeds [-8, 7]
ippStsAacTnsDirectErr — *pTnsDirection exceeds [0, 1]

% NOTE. numWin is the number of windows in a window sequence of the
e,

current frame. numWin is 8 if window sequence is
EIGHT_SHORT_SEQUENCE, or it is 1 for other window sequences. numSwb
is the total number of scalefactor window bands for the actual window type
(long or short window) of the current frame.
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MDCTInv_AAC 32s16s

Prototype
IppStatus ippsMDCTInv_AAC_32s16s (lpp32s *pSrcSpectralCoefs, Ippl6s
*pDstPcmAudioOut, Ipp32s *pSrcDstOverlapAddBuf, int winSequence, int
winShape, int prevWinShape, int pcmMode)
This module is used to map the time-frequency domain signal into time domain and generate 1024
reconstructed 16-bit signed little-endian PCM samples as output for each channel. This module
consists of an IMDCT transform, and a windowing and an overlap-add operation. In order to adapt
the time/frequency resolution of the filterbank to the characteristics of the input signal, a block
switching tool is also adopted. For each channel, 1024 time-frequency domain samples are
transformed into the time domain via the IMDCT. After applying the windowing operation, the
first half of the windowed sequence is added to the second half of the previous block windowed
sequence to reconstruct 1024 output samples for each channel. Output can be interleaved
according to pcmMode.

If pcmMode equals 2, output is in the sequence pDstPcmAudioOut[2*i], =0 to 1023, that is,
1024 output samples are stored in the sequence: pDstPcmAudioOut[0],
pDstPcmAudioOut[2], pDstPcmAudioOut[4],..., pDstPcmAudioOut[2046]. If pcmMode
equals 1, output is in the sequence pDstPcmAudioOut[i], i=0 to 1023. User must also
preallocate an input-output buffer pointed by pSrcDstOver lapAddBuf for overlap-add
operation. Reset this buffer to zero before first call, then use the output of the current call as the
input of the next call for the same channel.

Input Arguments
® pSrcSpectralCoefs — pointer to the input time-frequency domain samples in Q13.18
format. There are 1024 elements in the buffer pointed by pSrcSpectralCoefs.

® pSrcDstOverlapAddBuf — pointer to the overlap-add buffer which contains the second half
of the previous block windowed sequence in Q13.18. There are 1024 elements in this buffer.

* winSequence - flag that indicates which window sequence is used for current block
® winShape - flag that indicates which window function is selected for current block
* prevWinShape — flag that indicates which window function is selected for previous block

®* pcmMode - flag that indicates whether the PCM audio output is interleaved (LRLRLR...) or
not.
1 = not interleaved;2 = interleaved
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Output Arguments

pDstPcmAudioOut — Pointer to the output 1024 reconstructed 16-bit signed little-endian PCM
samples in Q15, interleaved if needed. See Table 10-7 for pDstPcmAudioOut computation errors.

Table 10-7 Computation Error List for pDstPcmAudioOut

1023
> error?(pDstPcmAudioOut[i])

MAX (error(pDstPcmAudioOut[i])) —
1=

1 96

® pSrcDstOverlapAddBuf — pointer to the overlap-add buffer which contains the second half
of the current block windowed sequence in Q13.18. The computation error compared with
double precision is listed in Table 10-8:

Table 10-8 Computation Error List for pSrcDstOverlapAdd
MAX (error(pSrcDstOverlapAddBuf{i])) ]ferror ? (pSrcDstOverlapAddBuf [i])
i=0
4 1536
Returns

®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the pointers: pSrcSpectralCoefs, pSrcDstOver lapAddBuf and
pDstPcmAudioOut is NULL;

— winSequence < 0, or winSequence > 3
— winShape <0, or winShape > 1

— prevWinShape <0, or prevWinShape >
— pcmMode < 1, or pcmMode > 2

10-30



Advanced Audio Coding 10

MPEG-4 AAC Primitives

DecodeMainHeader AAC

Prototype

IppStatus ippsDecodeMainHeader AAC(Ipp8u **ppBitStream, int *pOffset,
IppAACMainHeader *pAACMainHeader, int channelNum, int monoStereoFlag)

Description
Gets main header information and main layer information from bit stream.

Input Arguments

®* ppBitStream - double pointers to bit stream buffer

®* pOffset - pointer to the offset in one byte

®  ChannelNum — number of channels

®* monoStereoFlag — current frame has mono and stereo layers

Output Arguments
®* ppBitStream - double pointers to bit stream buffer after decode main element
®* pOffset - pointer to the offset in one byte after decode main element

® pAACMainHeader - pointer to the main element header, include window sequence, window
shape, max ssfb, scalefactor grouping, MS, TNS, ans LTP information

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

— At least one of the pointers: ppBitStream, ppBitStream, pAACMainHeader,
*ppBitStream, or pOffset is NULL

— *pOffset <O, or *pOffset > 7
— channelNum exceeds [1,2]
— monoStereoFlag exceeds [0,1]
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DecodeExtensionHeader AAC

Prototype

IppStatus ippsDecodeExtensionHeader AAC(Ipp8u **ppBitStream, int
*pOffset, IppAACExtHeader *pAACExtHeader, int monoStereoFlag, int
thisLayerStereo, int monoLayerFlag, int preStereoMaxSfb, int
hightstMonoMaxSfb, int winSequence)

Description
Get extension header information and exension layer information from bit stream.

Input Arguments

®* ppBitStream - double pointers to bit stream buffer

® pOffset — pointer to the offset in one byte

®* monoStereoFlag — current frame has mono and stereo layers
®* thisLayerStereo — current layer is stereo

®* monoLayerFlag — current frame has mono layer

® preStereoMaxSfb — previous stereo layer's maxSfb

®* hightstMonoMaxSTb — last mono layer's maxSfb

®* winSequence — window type, short or long

Output Arguments
® ppBitStream - double pointers to bit stream buffer
®* pOffset - pointer to the offset in one byte

® pAACExtHeader — pointer to the extension element header, include max sfb, ms,tns, FSS
control information

Returns
®  ippStsNoErr — no error
®  ippStsBadArgErr — bad arguments

— At least one of the pointers: ppBitStream, *ppBitStream, pAACExtHeader, or
pOffset is NULL.

— *pOffset <0or *pOffset >7
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— monnoStereoFlag exceeds [0,1]

— this LayerStereo exceeds [0,1]

— monoLayerFlag exceeds [0,1]

— preStereoMaxSfb exceeds [0, 51]
— hightstMonoMaxSfb exceeds [0,51]
— winSequence exceeds [0,3]

DecodePNS AAC 32s

Prototype

IppStatus ippsDecodePNS_AAC_32s(l1pp32s *pSrcDstSpec, int
*pSrcDstLtpFlag, Ipp8u *pSTtbCb, Ippl6s *pScaleFactor, int maxSfb, int
numWinGrp, int *pWinGrpLen, int samplingFreglndex, int winLen, int
*pRandomSeed)

Description

Implements perceptual noise substitution coding within an ICS. Certain sets of spectral
coefficients are derived from random vectors rather than from Huffman-coded symbols and an
inverse quantization process.

Input Arguments

® pSrcDstSpec - pointer to spectrum coefficients to be PNS
® pSrcDstLtpFlag - pointer to LTP used flag

® pSfbCb — pointer to scale factor code book

® pScaleFactor — pointer to the scale factor value

*  maxSfb — number of scale factor band used in this layer

®  numWinGrp — number of window group

® pWinGrpLen - pointer to the length of every window group
* samplingFreqlndex —sampling frequency index

® winLen —window length, 1024 for long, 128 for short

® pRandomSeed - random seed for PNS
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Output Arguments

®  pSrcDstSpec - pointer to the output spectrum substituted by perceptual noise
® pSrcDstLtpFlag - pointer to the LTP used flag

® pRandomSeed - random seed for PNS

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the pointers: pSrcDstSpec, pSTbCb, pScaleFactor, pWinGrpLen or
pSrcDstLtpFlag is NULL

— maxSfb exceeds [0,51]

— numWinGrp exceeds [1, 8]

— samplingFreglndex exceeds [0,12]
— winLen is neither 128 nor 1024

LongTermReconstruct AAC 32s
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Prototype

IppStatus ippsLongTermReconstruct_AAC_32s(lpp32s *pSrcEstSpec, Ipp32s
*pSrcDstSpec, int *plLtpFlag, int winSequence, int samplingFreglndex)

Description

Use Long Term Reconstruct (LTP) to reduce the redundancy of a signal between successive
coding frames. LTP is a forward adaptive predictor, which is inherently less sensitive to round-off
numerical errors in the decoder or bi errors in the transmitted spectral coefficients. Add the vector
of decoded spectral coefficients and the corresponding frequency domain vector to get the vector
of reconstructed spectral coefficients.

Input Arguments

® pSrcDstSpec - pointer to spectral coefficients to do long term prediction
® pSrcEstSpec - pointer to the frequency domain vector

®* winSequence — window type (long or short)

* samplingFreqlndex —sampling frequency index
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® pLtpFlag - pointer to the LTP used flag

Output Arguments
pSrcDstSpec — pointer to spectral coefficients have been done long term prediction

Returns

®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments
— At least one of the pointers: pSrcDstSpec, pSrcEstSpec and pLtpFlag is NULL
— winSequence exceeds [0,3]
— samplingFreqlndex exceeds [0,12]

MDCTFwd_AAC_32s

Prototype

IppStatus ippsMDCTFwd_AAC_32s(lpp32s *pSrc, lpp32s *pDst, Ipp32s
*pSrcDstOverlapAdd, int winSequence, int winShape, int preWinShape,
Ipp32s *pWindowedBuf)

Description

In the Long Term Reconstruct (LTP) loop, MDCT is needed to generate spectrum coefficient of
PCM samples.

Input Arguments

®  pSrc - pointer to temporal signals to do MDCT

® pSrcDstOverlapAdd — pointer to overlap buffer. Not used in MPEG-4 AAC decode

* winSequence —window sequence shows that this block is long or short block

®* winShape — window shape shows current window's shape

®* preWinShape — window shape shows previous window's shape

®* pWwindowedBuf —work buffer for MDCT, length of pWindowedBuf is at least 2048 words

Output Arguments
® pSrcDstOver lapAdd — pointer to overlap buffer. Not used in MPEG-4 AAC decode.
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®* pDst - output of MDCT, the spectral coefficients of PCM samples

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

— At least one of the pointers: pSrc, pDst, pWindowedBuf or pSrcDstOver lapAdd is
NULL.

— winSequence exceeds [0,3]
— winShape exceeds [0,1]
— preWinShape exceeds [0,1]

EncodeTNS AAC 32s 1
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Prototype

IppStatus ippsEncodeTNS_AAC_32s_1(lpp32s *pSrcDst, const int
*pTnsNumFilt, const int *pTnsRegionLen, const int *pTnsFiltOrder,
const int *pTnsFiltCoefRes, const Ipp8s *pTnsFiltCoef, const int
*pTnsDirection, int maxSfb, int profile, int samplingFreglndex, int
winLen)

Description

In the Long Term Reconstruct (LTP) loop, Analysis Temporal Noise Shaping is needed for
reversion of TNS.

Input Arguments

® pSrcDst - pointer to the spectral coefficients to do encode TNS
®*  pTnsNumFi It — pointer to number of TNS filter

® pTnsRegionLen — pointer to length of TNS filter

® pTnsFiltOrder — pointer to TNS filter order

®* pTnsFiltCoefRes - pointer to TNS coef resolution flag

® pTnsFiltCoef — pointer to TNS filter coefficients

® pTnsDirection — pointer to TNS direction flag

®*  maxSfb — maximum scale factor number
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®* profile - audio profile
* samplingFreqlndex —sampling frequency index
® winLen —window length

Output Arguments
Pointer to the spectral coefficients have done encode TNS.

Returns
® ippStsBadArgErr — bad arguments
— At least one of the pointers: pSrcDst, pTnsNumFi I't, pTnsRegionLen,
pTnsFiltOrder, pTnsFiltCoefRes, pTnsFiltCoef or pTnsDirection is NULL
— maxSfb exceeds [0,51]; winLen is neither 128 nor 1024; samplingRate Index
exceeds [0,12]

LongTermPredict AAC 32s

Prototype

IppStatus ippsLongTermPredict _AAC_32s(lpp32s *pSrcTimeSignal, 1pp32s
*pDstEstTimeSignal, 1ppAACLtpInfo *pAACLtpInfo, int winSequence)

Description

In the Long Term Reconstruct (LTP) loop, Analysis LTP is needed to get the predicted time
domain signals.

Input Arguments

® pSrcTimeSignal — pointer to the temporal signals to be predicted in temporary domain
®* pDstEstTimeSignal — pointer to the output of samples after LTP

®  pAACLtpInfo - pointer to the LTP information

® winSequence — window type (short or long)

Output Arguments
pDstEstTimeSignal — pointer to the output of prediction in time domain
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Returns
ippStsBadArgErr — bad arguments

— At least one of the pointers: pSrcDstTime, or pAACMainHeader is NULL
— winSequence exceeds [0,3]

NoiseLessDecode AAC
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Prototype
IppStatus ippsNoiseLessDecode AAC (Ipp8u **ppBitStream, int *pOffset,

IppAACMainHeader *pAACMainHeader, Ippl6s *pDstScaleFactor, 1pp32s

*pDstQuantizedSpectralCoef, Ipp8u *pDstSTthCb, Ipp8s
*pDstTnsFiltCoef, IppAACChaninfo *pChanlnfo, int winSequence, int
maxSfb, int commonWin, int scaleFlag, int audioObjectType

Description

This is a general noiseless decode module for MPEG-2 and MPEG-4 objects. In the AAC
scaleable object of MPEG-4, if PNS is used in one scale factor band, the pDstSfbCb[sfb]
should be NOISE_HCB(13) and the *pDstScaleFactor contains the noise energy of this scale
factor band. The spectrum in this scale factor band does not have to be Huffman decoded, and the
pDstQuantizedSpectralCoef of this scale factor band can set to be zero.

In AAC scaleable object, pDstTnsFi ItCoef and pAACMainHeader are not used.

Input Arguments

ppBitStream — double pointer to the bit stream to be parsed
pOffset — pointer to the offset in one byte

pAACMainHeader — pointer to main header information. Not used in scaleable object. When
commonWin==0 && scaleFlag==0, need to decode LTP information and save in
pAACMainHeader->pLtpinfo[].

pChanlInfo — pointer to channel information structure
windowSequence — window type, short or long

maxS¥b — number of scale factor band

commonWin — if channel pair use the same ics information
scaleFlag — if scaleable is used
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®* audioObjectType — audio object type indication. 1:main, 2:LC, 6:scaleable

Output Arguments

* ppBitStream - double pointer to the bit stream has been parsed
®* pOffset — pointer to the offset in one byte

® pChanlnfo - pointer to channel information structure

®* pDstScaleFactor - pointer to the scale factor has been parsed

®* pDstQuantizedSpectralCoef — pointer to the quantized spectral coefficients after
Huffman decoder

® pDstSThCb — pointer to the scale factor code book index
* pDstTnsFi ltCoef — pointer to TNS filter coefficients. Not used in scaleable object.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the pointers: ppBitStream, pOffset, *ppBitStrean,
pAACMainHeader, pDstScaleFactor, pDstTnsFiltCoefT,
pDstQuantizedSpectralCoef, pChanlnfo or pDstSfbCh is NULL

— *pOffset exceeds [0,7]

— winSequence exceeds [0,3]; maxSTb exceeds [0,51]
— commonWin exceeds [0,1]

— scaleFlag exceeds [0,1]

— audioObjectType exceeds [0,16]

LtpUpdate AAC 32s

Prototype

IppStatus ippsLtpUpdate AAC_32s (Ipp32s *pSpecVal, lIpp32s *pLtpSaveBuf,
int winSequence, int winShape, int preWinShape, Ipp32s *pWorkBuf)

Description

In the Long Term Reconstruct (LTP) loop, buffer update is required. This includes IMDCT and
updating the save buffer.
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Input Arguments

®* pSpecVal - pointer to spectral value after TNS decoder in LTP loop

®* pLtpSaveBuf - pointer to save buffer for LTP. Buffer length should be 3*frameLength

* winSequence — window type, 0-long, 1-long start, 2-short, 3-long stop

®* winShape — window shape, KBD or SIN window

®* preWinShape — window shape of previous window

*  pWorkBuf —work buffer for Ltp update, length of pWorkBuf is at least 2048*3 = 6144 Words

Output Arguments

pLtpSaveBuf — pointer to save buffer for LTP. Buffer length should be 3*frameLength. The
value is saved for next frame.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the pointers: pLtpSaveBuf, pWworkBuf or pSpecVal is NULL
— winSequence exceeds [0,3]
— winShape exceeds [0,1]
— preWinShape exceeds [0,1]

Quantinv_ AAC 32s 1
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Prototype

IppStatus ippsQuantinv_AAC _32s 1 (lIpp32s *pSrcDstSpectralCoef, const
Ippl6s *pScalefactor, int numWinGrp, const int *pWinGrpLen, int
maxSfb, const Ipp8u *pSfbCb, int samplingFreglndex, int winLen)

Description
For those scale factor band, *pSfbCb is NOISE_HCB(13), inverse quantization can be omitted.

Input Arguments
®* pSrcDstSpectralCoef — pointer to the Spectral coefficients before inverse quantization
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® pScalefactor — pointer to the scale factor

®  numWinGrp — number of window group

® pWinGrpLen — pointer to the length of every window group
® maxSfb — number of scale factor band

®  pSTbCb - pointer to the scale factor code book

® samplingFreqglndex — sampling frequency index

® winLen - length of window

Output Arguments
pSrcDstSpectralCoef — pointer to the Spectral coefficients after inverse quantization

Returns
®  ippStsNoErr —no error

® ippStsBadArgErr — bad Arguments. At least one of the pointers:
pSrcDstSpectralCoef, pScalefactor, pWinGrpLen and pSfbCb, is NULL

DecodeMsStereo AAC 32s 1

Prototype

IppStatus ippsDecodeMsStereo_AAC_32s 1 (Ipp32s *pSrcDstL, 1pp32s
*pSrcDstR, int msMaskPres, const Ipp8u (*ppMsUsed)[1PP_AAC_SF MAX],

Ipp8u *pSTbCb, Int numWinGrp, const int *pWinGrpLen, int maxSfb, int
samplingRatelndex, int winLen)

Description

This function is comparable to “DecodeMsStereo AAC_32s_1", but the “MPEG-2 AAC
Primitives” format of pMsUsed is different for MPEG-4 AAC scaleable objects. In this case,
information of pMsUsed is buffered into a two dimension array —
ppMsUsed[IPP_AAC_WIN_MAX][IPP_AAC_SF_MAX].

Input Arguments
®  pSrcDstL — pointer to left channel signal
®  pSrcDstR - pointer to right channel signal
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® msMaskPres — MS used indication, 0:non;1:some;2:all
®*  ppMsUsed — pointer to pointer to ms used information
® pSTbCb — pointer to scale factor band's code book

®*  numWinGrp — number of window group

® pWinGrpLen — pointer to length of window group

®*  maxSfb — maximum scale factor band

* samplingRatelndex —sampling frequency index

®* winLen —window length

Output Arguments
®  pSrcDstL - pointer to left channel signal after MS decode
® pSrcDstR - pointer to right channel signal after MS decode

Returns
®  IppStsNoErr —no error
® IppStsBadArgErr — bad arguments

— At least one of the following pointers:PSrcDstL, pSrcDstR, ppMsUsed, pWinGrpLen
or pSThCb is NULL

— If short block, numwWinGrp exceeds [1,8]
— If long block, numWinGrp =1

— maxSfb exceed [0,51]

— MsMaskPres exceeds [1,2]

— SamplingRatelndex exceeds [0,11]
— WinLen is neither 1024 nor 128

®* IppStsAacMaxsfbErr - the calculated scaleFactor band index exceeds the maximum
swb in each window
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Decode Channel Pair Element

DecodeChanPairElt MPEG4 AAC

Prototype

IppStatus ippsDecodeChanPairElt_MPEG4_AAC (Ipp8u **ppBitStream, int
*pOffset, IppAACIcsinfo *plcsinfo, IppAACChanPairElt *pChanPairElt,
IppAACMainHeader *pAACMainHeader, int predSfbMax, int
audioObjectType)

Description

Retrieves the channel_pair_element from the input bit stream. Individual_channel_stream is not
included here. If common_window flag that is decoded from the input bit stream is 0, all members
of plcsinfo and pChanPairElt are not changed except for pChanPairElt->commonWin.

Input Arguments
®* ppBitStream - double pointer to the current byte.

®* pOffset — pointer to the bit position in the byte pointed by *ppBitStream. Valid within 0 to
7. 0: MSB of the byte, 7: LSB of the byte.

® pChanPairelt - pointer to channel pair element.
® pAACMainHeader — pointer to Main layer header structure.

®* predSfbMax — maximum prediction scalefactor bands. For LC profile, set predSfbMax = 0
for there is no predictors.

®* audioObjectType — index of audio object type. 2: LC, 4: LTP

Output Arguments
®* ppBitStream - double pointer to the current byte, after decoding the channel pair element.

®* pOffset — pointer to the bit position in the byte pointed by *ppBitStream. Valid within 0 to
7. 0: MSB of the byte, 7: LSB of the byte.

® plcsinfo - pointer to IppAACIcsinfo structure.

Return
®  ippStsNoErr — No Error.
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ippStsBadArgErr — Bad arguments. Either ppBitStream, pOffset, *ppBitStreanm,
plcsinfo, or pChanPairElt is NULL. *pOffset exceeds [0, 7]. predSfbMax < 0 or

predSfbMax > 41 (maximum value for all sampling frequency in main profile).
ippStsAacMaxsfbErr — plcsinfo->maxSfh decoded from bitstream greater than
51(maximum scalefactor band for all sampling frequency).
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This chapter describes the Intel® Integrated Performance Primitives (Intel® IPP) that support the
general video processing and ITU-T Recommendation H.263 and Annexes - decoder part, which
most often is denoted by the “H263+ decoder” acronym.

% NOTE. The general video processing primitives do not have the H.263 as
= “modifier” in the function name; all H.263-oriented primitives have H.263 as
part (modifier) of the function name.

To benefit application developers, the design philosophy of the API, like all other primitives,
emphasizes maximum flexibility and performance. On the one hand, developers have the option of
building a complete H.263+ decoder solution using the compact set of performance optimized
H.263+ primitives described in this chapter, in conjunction with administrative and memory
management functions customized for the application environment. In this scenario, developers
are able to leverage the fact that the H.263+ primitives have been tuned carefully for minimum
cycle count, minimum memory footprint, and maximum quality. On the other hand, developers
also have the option of building a custom H.263+ decoder while electing to use only a subset of
Intel® IPP H.263+ primitives. This development option is facilitated in the API, by providing
access to the intermediate computational results generated by each of the H.263+ routines.
Moreover, the primitive API grants user access to all internal data objects. Finally, the API allows
the user to fully exploit performance properties of a particular target operating system (OS), by
allowing user management of administrative functions, such as the high-level bit stream
manipulation, memory allocation/deallocation, and control of the various buffers. The primitives
cover the following aspect of the H.263+ Decoder:

*  Motion vector decoding /block-based Motion compensation

® Inverse quantization, inverse zigzag positioning, reconstruction and IDCT; “compact” and
“plane” versions.
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* Block layer coefficient decoding, includes bit stream parsing, VLC decoding, inverse
quantization, inverse zigzag positioning and IDCT, with appropriate clipping on each step.

®  Unrestricted Motion Vectors Mode (Annex D in H.263+)

®  Advanced Prediction Mode (Annex F in H.263+)

®  Deblocking Filter Mode (Annex J in H.263+)

The rest of this chapter provides details on the H.263+ API, and is organized as follows. First,

section “High-Level Description” gives a high level description of on the H.263+ primitives. The

signal flowcharts are provided to show the data flow. Next, sections “Structure and Macro

Definitions” through “H.263+ Middle-Level Primitives” focus on individual primitive and

macro/data structures used in the primitives.

High-Level Description

Decoding the INTRA Macroblock
Figure 11-1 shows the process of decoding the INTRA macroblock.
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Figure 11-1 Process of Decoding the INTRA Macroblock

Decoding INTRA macroblock
DecodeMB_Intra_H263()

ParseMBHeader_Intra_H263()

!

I blockindex=1 |

No

(CBPY or CBPC)==1?

Decoding INTRA block Decoding INTRA block
(INTRADC & TCOEF) (INTRADC only)
ippiDecodeBlockCoef_Intra_ DecodeBlockCoef_
H263_1u8s() INTRADC_H263()

(++blockindex)>6?

End of Decoding INTRA
macroblock

A9287-01

NOTE. Cbpc -> mcbpc

cbpc: This variable length code represents a pattern of non-transparent

luminance blocks with at least one non intra DC transform coefficient in a

macroblock.

mcbpc: This is a variable length code that is used to derive the macroblock type

and the coded block pattern for chrominance.
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Figure 11-2 shows how the primary segment can be implemented through the low-level IPP

functions. ippiDecodeBlockCoef Intra_H263_1u8u( )is a middle-level function.

Figure 11-2 The Process of Decoding INTRA Block Using IPP Low Level Functions

Decoding INTRA Block
(*INTRADC & *TCOEF)

ippiDecodeBlockCoef_Intra_H263_1u8u()

Y

Bitstream Parsing
(parsing the INTRADC & TCOEF)

Y

Inverse Quantization and Clipping of Reconstruction Levels
ippiQuantinvintra_Compact_H263_16s_1()

Y

Inverse Zig-zag Positioning
ippiZigzaglnvClassical_Compact_16s()

Y

Inverse Transform
ippiDCTInv_H263_16s8u()

End of Decoding
INTRA Block

A8254-01

Figure 11-3 shows the process of decoding an inter macroblock.
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Figure 11-3 The Process of Decoding INTER Macroblock

Decoding INTER macroblock
DecodeMB_Inter_H263()

Bitstream Parsing
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}
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macroblock(Y)
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(Get MB Header) ippiCopyBlock_H263_8u()

Y

IUpdate MV buffer with zero |

!

Decoding Motion Vector Update MV buffer with zero;
ippiDecodeMV_H263(), blockindex=1
ippiDecodeMV_TopBorder_H263()
t No
I Predict; blockindex=1 |
No Yes «(CBPY or CBPC)==17 ~>N°
CBPY or CBPC)==17? -
{ ) Decoding INTRA block Decoding INTRA block
(INTRADC & TCOEF) (INTRADC only)
ippiDecodeBlockCoef_Inter_ DecodeBlockCoef_
H263_1u8s() INTRADC_H263()
Decoding INTER block coefficients | |
ippiDecodeBlockCoef_Inter_H263_1u16s()
(++blockindex)>6?

Motion compensation
ippiMCReconBlock_RoundOn() No

ippiMCReconBlock_RoundOff() —l

Copy block
ippiMCBIlock_RoundOff_8u()
ippiMCBIlock_RoundOn_8u()

!

(++blockindex)>6?

A9288-02
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ippiDecodeBlockCoef _Inter_H263_1u8u() is a middle-level function. Its main part can be
implemented through the low-level IPP functions as shown in Figure 11-4.

Figure 11-4 Decoding INTER Block Coefficients Using IPP Low Level Functions

Decoding INTER block coefficients (TCOEF)
ippiDecodeBlockCoef_Inter_H263_1ul16s()

Bitstream parsing
(Parsing the TCOEF)

!

Inverse Quantization and clipping
of reconstruction levels
ippiQuantinvinter_Compact_H263_16s()

!

Inverse Zigzag positioning
ippiZigzaginvClassical_Compact_16s()

!

Inverse transform
ippIDCTinv_8x8_16s()

End of Decoding INTER block coefficients

A8856-01

Structure and Macro Definitions

Motion Vector

The structure 1PPMotionVector is defined as follows and be used in both H.263 and MPEG-4
video processing primitives.
typedef struct {
Ippl6s dx;
Ippl6s dy;
} IppMotionVector;
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Figure 11-5 Plane, Frame, and Expanded Pixels

pPlane

t expandPels

pFrame _/

expandPels expandPels

frameHeight

expandPels

planeWidth

A9289-01

Step
Figure 11-5 describes the relationship between plane, frame and expanded pixels. The Step,
frameWidth, frameHeight, and expandPels are defined as following:
® Step - width of the plane, measured in pixels
®  Step - width of the plane. — planeWidth > frameWidth + 2 * expandPels
® frameWidth — width of the frame
®*  frameHeight - height of the frame
* expandPels — number of pixels to be expanded in one direction
In the default prediction mode of H.263, motion vectors are restricted such that all pixels

referenced by them are within the coded picture area. Thus the value of expandPels can be zero,
so that: Step = frameWidth.
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When motion vectors are allowed to point outside the picture, such as in Annex D. We need
expand the frame to plane, so that: Step = frameWidth + 2 * expandPels.

Compact

Figure 11-6 Compact Buffer

[ O IIQ _I_HU
o
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e
F
5

Bitstream %

A8261-01

H.263 utilizes transform coding to reduce spatial redundancy. Therefore, by exploiting the
sparseness of the blocks parsed from the bit stream, we can reduce the calculation in inverse
zig-zag positioning and inverse quantization. From variable length decoding, we can know the
index of the last non-zero coefficient. Then the buffer length for inverse zig-zag positioning and
inverse quantization is much less than 64, so it is named a “compact” buffer. Figure 11-6 shows
the concept of compact and full buffers.

Furthermore, in our middle-level implementation, variable length decoding, inverse zig-zag
positioning and inverse quantization are incorporated in one step. The zeros between two non-zero
coefficients are also squeezed. The buffer is more “compact” then.

Alignment

It is assumed that the frames, macroblocks and blocks are 64-bit aligned. That is:
(pPlane & 7) == 0 && (step & 7) ==
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General Video Processing and H.263 Decoder Primitives

This section lists all the general video processing primitives and H.263 basic decoder primitives.
The general video processing primitives can be easily identified since they do not have the H.263
as “modifier” in the function name, while all H.263-oriented primitives have H.263 as part
(modifier) of the function name.

DecodeMV_H263
DecodeMV_TopBorder H263

Prototype

IppStatus ippiDecodeMV_H263 (Ipp8u ** ppBitStream, int * pBitOffset,
IppMotionVector * pSrcDstMV);

IppStatus ippiDecodeMV_TopBorder_H263 (Ipp8u ** ppBitStream, iInt *
pBitOffset, IppMotionVector * pSrcDstMV);

Description
Decodes the motion vector by predicting current MV according to three MVs around and adding
to the differential motion vector data parsed from the bit stream.

See “Examples” for more detailed information and an illustration of motion vector decoding.

Input Arguments

® ppBitStream - indicates the pointer to the current byte in the bit stream buffer. There is no
boundary check for the bit stream buffer.

* pBitOffset — pointer to the bit position in the byte pointed by *ppBitStream. Valid within
Oto7.

®  pSrcDstMV — pointer to the motion vector at the left side of the current macroblock in the
motion vector buffer

% NOTE. The motion vectors are saved in a buffer with (number of macroblock
_ per row + 2) in length, measured in the size of IppMotionVector.
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Output Arguments

®* ppBitStream— *ppBitStream is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer. *ppBi tStream should be located at the first bit of MVD
in the bit stream prior to the function call.

®* pBitOffset — *pBitOffset is updated so that it points to the current bit position in the
byte pointed by *ppBitStream. *pBitOffset should be located at the first
bit of MVD in the bit stream prior to the function call.

®  pSrcDstMV — *(pSrcDstMV + 1) is updated to the decoded motion vector which will be
used to predict the next motion vector and to perform motion compensation

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the following pointers: ppBitStream, *ppBitStream, pBitStream,
pBitOffset is NULL.
— *pBitOffset exceeds [0,7]
®  ippStsErr - status error
— 9 continuous zero encountered in parsing MVD from the bit stream

E NOTE. lllegal code in bit stream which can not be looked up in the VLC table
e can cause a status error.

CopyMB_H263 8u
CopyBlock H263 8u

Prototype

IppStatus ippiCopyMB_H263_8u (const Ipp8u * pSrc, Ipp8u * pDst, int
step);

IppStatus ippiCopyBlock H263 8u (const Ipp8u * pSrc, lpp8u * pDst, int
step);
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Description
Copies the reference macroblock/block to the current macroblock/block.

g NOTE. When coded macroblock indication (COD) is set to ““1”, the

= macroblock is not coded. The macroblock should be treated as an INTER
macroblock with motion vector for the whole block equal to zero and with no
coefficient data. In this case, only macroblock copy is performed in baseline
H.263 decoder. The macroblock copy is defined as:

pDst[i * step + j] = pSrcli *step + j]
where i,j =[0,15]

Input Arguments

® pSrc - pointer to the macroblock/block in the reference frame spatially correspondent to the
macroblock/block in the current frame

® step - width of the source and destination planes

Output Arguments
pDst — pointer to the macroblock/block to be copied

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the following pointers: pDst, pSrc is NULL
— pSrc or pDst is not 64-bit aligned
— step is less than 8 (block version), 16 (MB version), or step is not a multiple of 8

11-11



11 Intel® IPP on Intel® PCA Processors

QuantInvintra Compact H263 16s I
QuantInvinter Compact H263 16s 1

Prototype

IppStatus ippiQuantinvintra_Compact_H263 16s_I(lppl6s * pSrcDst, int
len, int QP);

IppStatus ippiQuantinvinter_Compact_H263 16s_I(lppl6s * pSrcDst, int
len, int QP);

Description
Performs inverse quantization on an Intra or Inter coded block stored in a “compact” buffer.

% NOTE. Inverse quantization is defined as:
.
0, pSrc[i]=0
pDstfi]={ Sign(pSrcfi]) * QP * (2*| pSrcfi]| +1) pSrcfi] =0, QP is odd

Sign(pSrcfil) * (QP* (2*|pSrcli] +1) 1) pSrcli]=0, QPiseven
. [0,1,...,len-1 INTER mode
where i= ,an
1,2,...,len-1 INTRAmode

1024, pSrc[0] =255, and in INTRA mode

pDst[0] = . .
8* pSrc[0], otherwise,andin INTRA mode

Input Arguments
® pSrcDst - pointer to input (quantized) block
® len - length of the input and output compact buffer
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® QP - quantization parameter

Output Arguments
®  pSrcDst - pointer to output (reconstructed) block

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— pSrcDstis NULL
— QP exceeds [1,31] or len exceeds [1,64]

ZigzagInvClassical Compact 16s
ZigzagInvHorizontal Compact 16s
ZigzagInvVertical Compact 16s

Prototype

IppStatus ippiZigzaglnvClassical_Compact_16s (const lppl6s * pSrc, int
len, lIppl6s * pDst);

IppStatus ippiZigzaglnvHorizontal _Compact_16s (const lppl6s * pSrc, int
len, Ippl6s * pDst);

IppStatus ippizZigzaglnvVertical_Compact 16s (const Ippl6s * pSrc, int
len, Ippl6s * pDst);

Description
Performs classical, horizontal or vertical inverse zigzag scan on a block stored in a “compact”
buffer.
NOTE. An inverse scan is a mapping from the normal scan pattern to one
_ zigzag scan pattern. For example, after performing a classical zigzag scan on a

block, pDst[3] = pSrc[6].
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Input Arguments
® pSrc - pointer to input (zigzagged) block
® len - length of the input and output compact buffer

Output Arguments

pDst — pointer to output (normally scanned) block. The output is in a “full” buffer which contains
64 elements. The output buffer should be zeroed out prior to the function call.

Returns
IPP status code.

Three scan patterns are defined and compared with the normal scan as shown in the following
figure (the numbers indicate the scanning sequence):

Figure 11-7 Zigzag Scan Patterns

O[1 |56 |14]15]27 |28 0O]1|12]3]|10f11]12(13 0|4]6 [20]22]36(38]52

2147 )13]16(26(29]42 451819 ]|17]16(15(14 1157 ]21|23(37]39]53

3|8 1217125304143 6 |7 11918 |26 |27 (28|29 2|8 119(24|34]40(50 |54

9 |11|18(24|31]40 |44 (53 20 (21 (2412530313233 319 |18(25(35]41|51(55

10119(23 3239|4552 |54 22 (23|34 |35(42 |43 (44|45 10 (17 |26 | 30 [ 42 | 46 | 56 | 60

20122133 |38 (46|51 |55]60 363740 |41 (46|47 48|49 11116 (27 |31 |43 |47 |57 |61

213437475056 |59 |61 38 (39|50 ([51]|56 (57|58 |59 12 (15|28 |32 |44 | 48 [ 58 | 62

35 (36|48 |49 (57 (58|62 |63 52153 |54 |55(60|61]62|63 13 (14 (29|33 |45 (49 (59|63

Classical Zigzag Scan Alternate-Horizontal Scan Alternate-Vertical Scan

A9120-01
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Figure 11-8 Normal Scan Pattern
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DCT8x8Inv_Video_16s8u_CI1R
DCT8x8Inv_Video 16s C1
DCT8x8Inv_Video 16s C1I

Prototype

IppStatus ippiDCT8x8Inv_Video_16s8u_ClR (const lppl6s * pSrc, lpp8u *
pDst, int dstStep);

IppStatus ippiDCT8x8Inv_Video_16s C1l (const lppl6s * pSrc, lppl6s *
pDst);
IppStatus ippiDCT8x8Inv_Video _16s C1l (Ippl6s * pSrcDst);

Description
Performs 8x8 2D inverse discrete cosine transform and places the results in the destination plane.
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% NOTE. The 2D (8 by 8) inverse DCT (normalized) is defined by:
e,
L 2n+1 2m+1
X ZEZZCUCVXUVCOS (2n+iur | ) (2m+Lvz
" u=0 v=0 ' 16 16

withuyv=0,1,...,7
where n, m = spatial coordinates in the pixel domain,
u,v =coordinates in the transform domain,

N :{1/\/5, =0

1, |0
The output is clipped to [0, 255].

Input Arguments
®  pSrc - pointer to the input DCT coefficient. pSrc should be 64-bit aligned.
® dstStep — width of the destination plane.

Output Arguments
® pDst - pointer to the block in the destination plane

Returns
IPP status code.

% NOTE. pSrc and pSrcDst should be 64-bit aligned. (pSrcDst does not seem to
= be listed in Input or Output Args.)
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ReconMB_ H263
ReconMB_H263 1
ReconBlock H263
ReconBlock H263 1

Prototype
IppStatus ippiReconMB_H263 (const Ipp8u * pSrc, const Ippl6s *
pSrcResidual, Ipp8u * pDst, int step);

IppStatus ippiReconMB_H263 I (Ipp8u * pSrcDst, const lppl6s *
pSrcResidual, int step);

IppStatus ippiReconBlock H263 (const Ipp8u * pSrc, const Ippl6s *
pSrcResidual, Ipp8u * pDst, int step);

IppStatus ippiReconBlock H263 I (Ipp8u * pSrcDst, const lppl6s *
pSrcResidual, int step);

Description

Reconstructs INTER macroblock/block by summing the prediction and the results of the inverse
transformation (residuals).

% NOTE. To prevent quantization distortion of transform coefficient amplitudes
_ causing arithmetic overflow in the encoder and decoder loops, clipping
functions are inserted. Clipping range is [0, 255].

Input Arguments
®  pSrc/pSrcDst — pointer to input prediction in the reference plane

® pSrcResidual — pointer to the result of the inverse transformation in a residual buffer (64
elements)

® step — width of the source and destination planes

Output Arguments
pDst/pSrcDst — pointer to the reconstructed macroblock/block in the destination plane
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Returns

®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments
— At least one of the following pointers: pDst, pSrcDst, pSrcResidual is NULL.
— Any one of pSrcDst, pDst, or pSrcResidual is not 64-bit aligned.
— step is less than 8 (block version), 16 (MB version) or step is not a multiple of 8.

MCReconBlock RoundOff

Prototype

IppStatus ippiMCReconBlock RoundOff(const Ipp8u *pSrc, int srcStep,
Ippl6s * pSrcResidue, lIpp8u * pDst, int dstStep, int predictType);

Description

Reconstructs INTER block by summing the motion compensation results and the results of the
inverse transformation (residuals). RCONTRL = 0.

g NOTE. RoundOff in the function name means rounding control parsed from
_ the bit stream equals zero. The high level function has the responsibility to
switch to the appropriate function according to the value of rounding control.

Input Arguments
® pSrc - pointer to block in the reference plane
® SrcStep — width of the source plane. This should be greater than 8 and be a multiple of 8.

® pSrcResidue — pointer to the result of the inverse transformation in a residual buffer (64
elements). This should be aligned on an 8-byte boundary.

®  DstStep — width of the destination plane
®* predictType - bilinear interpolation type. Refer to “Bilinear Interpolation Type”
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Output Arguments

pDst — pointer to the reconstructed block in the destination plane. This should be aligned on an
8-byte boundary.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the pointers: pSrc, pSrcResidue, pDst is NULL
— predictType is out of [0, 3]
— pDst or pSrcResidue is not 8-byte aligned
— srcStep is <=8 or or not a multiple of 8
— DstStep is <8 or not a multiple of 8

MCReconBlock RoundOn

Prototype

IppStatus ippiMCReconBlock RoundOn(const Ipp8u *pSrc, int srcStep,
Ippl6és * pSrcResidue, Ipp8u * pDst, int dstStep, int predictType);

Description

Reconstructs INTER block by summing the motion compensation results and the results of the
inverse transformation (residuals). RCONTRL = 1.

g NOTE. RoundOn in the function name means rounding control parsed from
= the bit stream equals one. The high level function has the responsibility to
switch to the appropriate function according to the value of rounding control.
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Input Arguments
pSrc — pointer to block in the reference plane

srcStep — width of the source plane. This should be greater than 8 and be a multiple of 8.

pSrcResidue — pointer to the result of the inverse transformation in a residual buffer (64
elements). This should be aligned on an 8-byte boundary.

DstStep — width of the destination plane
predictType — bilinear interpolation type. Refer to “Bilinear Interpolation Type”.

Output Arguments

pDst — Pointer to the reconstructed block in the destination plane. This should be aligned on an
8-byte boundary.

Returns

ippStsNoErr —no error
ippStsBadArgErr — bad arguments

At least one of the pointers: pSrc, pDst is NULL
predictType is out of [0, 3]

If pDst or pSrcResidue is not 8-byte aligned
srcStep is <=8 or or not a multiple of 8
DstStep is <8 or not a multiple of 8

MCBlock RoundOff 8u
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Prototype
IppStatus ippiMCBlock _RoundOff_8u(const Ipp8u *pSrc, int srcStep, Ipp8u *

pDst, int dstStep, int predictType);

Description

Do motion compensation and copy the result to the current block. RCONTRL = 0.
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% NOTE. RoundOff in the function name means rounding control parsed from
= the bit stream equals zero. The high level function has the responsibility to
switch to the appropriate function according to the value of rounding control.

Input Arguments

® pSrc - pointer to block in the reference plane

®* srcStep — width of the source plane. This should be greater than 8 and be a multiple of 8.
® dstStep — width of the destination plane

®* predictType - bilinear interpolation type. Refer to “Bilinear Interpolation Type”.

Output Arguments

pDst — Pointer to the collocated block in the destination plane. This should be aligned on an
8-byte boundary.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— If at least one of the pointers: pSrc, pSrcResidue, pDst is NULL
— If predictType is out of [0, 3]
— If pDst is not 8-byte aligned
— srcStep is <=8 or or not a multiple of 8
— DstStep is <8 or not a multiple of 8

MCBlock RoundOn_8u

Prototype

IppStatus ippiMCBlock_RoundOn_8u(const Ipp8u *pSrc, int srcStep, lpp8u *
pDst, int dstStep, int predictType);
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Description
Do motion compensation and copy the result to the current block. RCONTRL = 1.

=

NOTE. RoundOn in the function name means rounding control parsed from
the bit stream equals one. The high level function has the responsibility to
switch to the appropriate function according to the value of rounding control.

Input Arguments
®  pSrc- pointer to block in the reference plane
® srcStep — width of the source plane. This should greater than 8 and be a multiple of 8.

® dstStep — width of the destination plane
* predictType - bilinear interpolation type. Refer to “Bilinear Interpolation Type”.

Output Arguments

pDst - Pointer to the collocated block in the destination plane. This should be aligned on an
8-byte boundary.

Returns

®  ippStsNoErr —no error

ippStsBadArgErr — bad arguments

If at least one of the pointers: pSrc, pSrcResidue, pDst is NULL
If predictType is out of [0, 3]

pDst is not 8-byte aligned

srcStep is <=8 or or not a multiple of 8

DstStep is <8 or not a multiple of 8

DCT8x8Fwd_Video 16s_C11

Prototype
IppStatus ippiDCT8x8Fwd_Video_16s C1l (Ippl6s * pSrcDst);
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Description
Performs 8x8 2D forward discrete cosine transform in-place.

Input Arguments

pSrcDst — Pointer to the input block (in spatial domain). This should be aligned on an 8-byte
boundary. Input should be limited to [-256, 255] (9-bit signed). Otherwise, the output will be

incorrect.

Output Arguments
pSrcDst — Pointer to the transformed block (DCT coefficients). This should be aligned on an
8-byte boundary.

Returns

®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: pSrcDst
— pSrcDst is not aligned on an 8-byte boundary

% NOTE. Limit the input to [-256, 255] (9-bit signed). Otherwise, the output will
_ be incorrect.

DCT8x8Fwd_Video_16s_C1

IppStatus ippiDCT8x8Fwd_Video_16s C1l (const lppl6s * pSrc, lppl6s *
pDst);

Description
Performs 8x8 2D forward discrete cosine transform for inter blocks.

Input Arguments

pSrc — Pointer to the input block (in spatial domain). This should be aligned on an 8-byte
boundary. Limit the input to [-256, 255] (9-bit signed). Otherwise, the output will be incorrect.
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Output Arguments
pDst - Pointer to the transformed block (DCT coefficients). This should be aligned on an 8-byte
boundary.

Returns

®  ippStsNoErr —no error

® ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: pSrc, pDst
— pSrc is not 8-byte aligned
— pDst is not 8-byte aligned

% NOTE. Limitthe input to [-256, 255] (9-bit signed). Otherwise, the output will
= be incorrect.

DCT8x8Fwd_Video 8ul6s CIR

Prototype
IppStatus 1ppiDCT8x8Fwd_Video_8ul6s_C1R (const Ipp8u * pSrc, int srcStep,
Ippl6és * pDst);

Description
Performs 8x8 2D forward discrete cosine transform for intra blocks.

Input Arguments

®  pSrc - pointer to the input block (in spatial domain). This should be aligned on an 8-byte
boundary.

® srcStep — width of the source plane. It should be no less than 8 and be a multiple of 8.

Output Arguments
pDst - pointer to the transformed block (DCT coefficients). This should be aligned on an 8-byte
boundary.
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Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: pSrc, pDst
— srcStep <8 or is not a multiple of 8
— pSrc is not 8-byte aligned
— pDst is not 8-byte aligned

H.263+ Primitives

The primitives in this section provide Optional Mode Support for H263+ decoder.

ExpandFrame H263 8u

Prototype

IppStatus ippiExpandFrame_H263_8u (Ipp8u * pSrcDstPlane, int frameWidth,
int frameHeight, int expandPels, int step);

Description
Expands the frame to the plane in order to enable the motion vectors over picture boundaries
feature.

Motion vectors over picture boundaries feature should be enabled if the annexes D, F, J of H.263+
are supported. When a pixel referenced by a motion vector is outside the coded picture area, an
edge pixel is used instead.

It is assumed that the picture frame has been reconstructed prior to the function call.

Input Arguments

® pSrcDstPlane - pointer to plane

® frameWidth —width of the frame

®* frameHeight - height of the frame

* expandPels —number of pixels to be expanded in one direction

* step - width of plane step. >= planeWidth = frameWidth + 2 * expandPels
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Output Arguments
pSrcDstPlane - pointer to plane

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— pSrcDstPlane is NULL
— pSrcDstPlane is not 64-bit aligned
— Any one of step, frameWidth, or expandPels is less than 8
— Any one of step, frameWidth, or expandPels is not a multiple of 8
— frameHeight is less than or equal 0
— step < (frameWidth + 2 * expandPels)

PredictBlock OBMC 8u

11-26

Prototype

IppStatus ippiPredictBlock OBMC_8u (const lpp8u * pSrcRef, Ipp8u * pDst,
int step, IppMotionVector * pMVCur, lIppMotionVector * pMVLeft,
IppMotionVector * pMVRight, IppMotionVector * pMVAbove,
IppMotionVector * pMVBelow);

Description

Predicts current block from the reference frame using overlapped block motion compensation
(OBMC).

Input Arguments

®* pSrcRef — pointer to the block in the reference (source) plane spatially correspond to the
block being predicted in the current plane. pSrcRef should be 64-bit aligned.

®  pMVCur, pMVLeft, pMVRight, pMVAbove, pMVBelow — pointer to the current block and of
the blocks left to, right to, above and below the current block.
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% NOTE. Any one of the five motion vectors should be adjusted prior to the
_ function call if the sample referenced by the motion vector stays outside the
decode picture area.

®* step - width of the source and destination planes

Output Arguments
pDst — pointer to the compensated block in the destination plane. pDst should be 64-bit aligned.

Returns
IPP status code.

s NOTE. If one of the surrounding blocks was not coded, the pointer to the
= corresponding remote motion vector should be set to zero motion vector.

If one of the surrounding blocks was coded in INTRA mode, or was outside the
picture border, the pointer to the corresponding remote motion vector should be
set to the pointer to the current motion vector the same as that passed to
pMVCur).

If the current block is at the bottom of the macroblock, the remote motion vector
corresponding with an 8 by 8 luminance block in the macroblock below the
current macroblock should be replaced by the motion vector for the current
block (as described in note 3, above).
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FilterDeblocking HorEdge H263 8u I
FilterDeblocking VerEdge H263 8u I

Prototype

IppStatus ippiFilterDeblocking_HorEdge H263 8u_1 (Ipp8u * pSrcDst, int
step, int QP);

IppStatus ippiFilterDeblocking_VerEdge H263 8u_1 (Ipp8u * pSrcDst, int
step, int QP);

Description
Performs deblock filtering of one block edge (horizontal or vertical) on the reconstructed frames.

Input Arguments

®  pSrcDst - pointer to the first pixel of the second block (block 2) of the two applied blocks.
pSrcDst points to the first pixel of the block 2 as shown in Figure 11-9.

® step - width of the source and destination plane. step is a multiple of 8.
® QP - Quantization parameter. QP’s value is found as described in Section J.3 of Annex J in
H.263+

Output Arguments
pSrcDst — pointer to the first pixel of the second block (block 2) of the two applied blocks

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— pSrcDstis NULL
— pSrcDst is not 64-bit aligned
— QP exceeds [1,31]
— step is not a multiple of 8 or step is less than 8
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Figure 11-9 SrcDst Pointer
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= c Block boundary
Example for filtered pixels
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blockl block2 on a horizontal block edge

H.263+ Middle-Level Primitives

The middle-level primitives are described in this section. These primitives are built to
performance the tasks that usually require several low-level primitives. A middle-level primitive
call usually consumes fewer CPU cycles than the equivalent calls to several low-level primitives.

DecodeBlockCoef Intra H263 1u8u

Prototype

IppStatus ippiDecodeBlockCoef Intra H263_1u8u (Ipp8u ** ppBitStream, int
* pBitOffset, Ipp8u * pDst, int step, int QP);

Description

Decodes the INTRA block coefficients. Inverse quantization, inverse zigzag positioning
(classical) and IDCT, with appropriate clipping on each step, are performed on the coefficients.
The results are then placed in the output frame/plane on a pixel basis.

For INTRA block, the output values are clipped to [0, 255] and written to current frame within the
destination plane.
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E NOTE. This function is used only when at least one non-zero AC coefficient of
_

current block exists in the bit stream.

The maximum absolute error is no more than 1.

Input Arguments

ppBitStream — indicates the pointer to the current byte in the bit stream buffer. There is no
boundary check for the bit stream buffer.

pBitOffset — pointer to the bit position in the byte pointed by *ppBitStream. Valid within
Oto7.

step — width of the destination plane

QP- quantization parameter (for non-INTRADC coefficients)

Output Arguments

ppBitStream— *ppBitStream is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer

pBitOffset — *pBitOffset is updated so that it points to the current bit position in the
byte pointed by *ppBitStream

pDst — pointer to the block in the destination plane

Returns

ippStsNoErr —no error

ippStsBadArgErr — bad arguments

— At least one of the following pointers: ppBitStream,*ppBitStream, pBitOffset,
pDst is NULL

— pDst is not 64-bit aligned

— *pBitOffset exceeds [0,7] or QP exceeds [1,31]

— step is less than 8 or step is not a multiple of 8

ippStsErr — status error

— 0x00 or 0x80 is encountered in parsing DC coefficient

— Invalid VLC code is encountered in parsing AC coefficient, if ESCAPE code
encountered, 0x00 for LEVEL is deemed as error, but 0x80 is not
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— llegal code in bit stream which can not be looked up in VLC table could result in status
error

— The count of the parsed code exceeds 64

DecodeBlockCoef Inter H263 1ul6s

Prototype

IppStatus ippiDecodeBlockCoef Inter_H263 1ul6s (Ipp8u ** ppBitStream,
int * pBitOffset, lIppl6s * pDst, int QP);

Description

Decodes the INTER block coefficients. Inverse quantization, inverse zigzag positioning (classical)
and IDCT, with appropriate clipping on each step, are performed on the coefficients. The results
(residuals) are placed in a contiguous array of 64 short int.

% NOTE. For INTER block, the output buffer holds the residuals for further
= reconstruction.

The maximum absolute error is no more than 1.

Input Arguments

®* ppBitStream - indicates the pointer to the current byte in the bit stream buffer. There is no
boundary check for the bit stream buffer.

* pBitOffset — pointer to the bit position in the byte pointed by *ppBitStream. Valid within
Oto7.

® QP - quantization parameter

Output Arguments

®* ppBitStream—*ppBitStream is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer
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pBitOffset — *pBitOffset isupdated so that it points to the up dated current bit position
in the byte pointed by *ppBitStream
pDst — pointer to the decoded residual buffer (a contiguous array of 64 short int)

Returns

ippStsNoErr —no error

ippStsBadArgErr — bad arguments

— At least one of the following pointers: ppBitStream, *ppBitStream, pBitOffset,
pDst is NULL

— pDst is not 64-bit aligned

— *pBitOffset exceeds [0,7] or QP exceeds [1,31]

ippStsErr — status error

— Invalid VLC code is encountered in parsing AC coefficient, if ESCAPE code
encountered, 0x00 for LEVEL is deemed as error, but 0x80 is not

— llegal code in bit stream which can't be looked up in VLC table could result in status
error

— The count of the parsed code exceeds 64

Examples

Motion Vector Decoding
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The motion vectors are saved in a buffer with [number-of-macroblock-per-row +2] * size of
(IppMotionVector) in length (byte). The first and the last motion vectors in this buffer are
always (0,0). The n-th unit in this buffer, excluding the first and last one, is the motion vector
of the (n-1)th macroblock in a line.

When the corresponding macroblock is at the top of the picture or at the top of the GOB if the
GOB header of the current GOB is non-empty, function
ippiDecodeMV_TopBorder_H263() is employed. The candidate predictor is stored on the
left of the current one in the buffer.

If not any of the above cases, in H263+ baseline, ippiDecodeMV_H263() is employed. The
three candidate predictors (MV1, MV2, MV3) are stored as Figure 11-10 depicts.

The buffer is updated after function has been called. The decoded motion vector replaces the
candidate predictor MV2 for future use.
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Figure 11-10 Motion Vector Decoding
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IppStatus ippsDecodeMV_H263 1lu8s
(Ipp8u * pBitStream, 1int * pBitOffset, IppMotionVector * pScrDstMV) ;

A8857-01
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This chapter describes the Intel® Integrated Performance Primitives (Intel® IPP) that are built to
support the ISO/IEC 14496-2 MPEG-4 video decoder. MPEG-4 is a widely used coding method
for video signals in various applications such as digital storage media, internet, various forms of
wired or wireless communication, etc.

To benefit application developers, the design philosophy of the primitives, like all other
primitives, emphasizes maximum flexibility and performance. On the one hand, developers have
the option of building a complete MPEG-4 decoder solution using the compact set of performance
optimized MPEG-4 primitives described in this chapter in conjunction with the user’s
administrative and memory management functions customized for the application environment. In
this scenario, developers are able to leverage the fact that the MPEG-4 primitives have been tuned
carefully for minimum cycle count, minimum memory footprint, and maximum quality. On the
other hand, developers also have the option of building a custom MPEG-4 decoder while electing
to use only a subset of the Intel® IPP MPEG-4 primitives. This development option is facilitated
in the API by providing access to the intermediate computational results generated by each of the
MPEG-4 routines. Finally, the API allows the user to fully exploit performance properties of a
particular target operating system (OS) by allowing user management of administrative functions
such as the high-level bit stream manipulation, memory allocation/deallocation, and control of the
various buffers, etc.

The primitives cover the following aspects of MPEG-4 decoder:

®  Progressive, non-scalable texture decoding and shape decoding

®  Macroblock-based repetitive and extended padding

* Block-based VLC decoding and inverse zigzag scan

*  Motion vector (include Motion Vector for shape) decoding and padding
® Intra DC/AC prediction

*  Block layer coefficient decoding, including bit stream parsing, VLC decoding, intra DC/AC
prediction (for intra blocks), inverse quantization, inverse zigzag and IDCT, with appropriate
clipping on each step.
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*  Motion compensation and reconstruction
* BAB decoding.
The rest of this chapter provides details on the MPEG-4 API, and is organized as follows. First,

section “High-Level Description” gives a high level description of on the usage of MPEG-4
primitives. The signal flowcharts are given to show the data flow. Next, section “Data Types and

Structures” focuses on individual macro/data structures used in the primitives. Section “MPEG-4
Decoder Primitives” focuses on each API definition and function.

High-Level Description

Figure 12-1 shows the general steps to take to decode a MacroBlock (MB) in Predictive coded
Video Object Plane (PVOP) and the associated primitives.
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Figure 12-1 Signal Flowchart in Decode a MB in PVOP and the Associated Primitives
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Data Types and Structures

The following sections describe the data types and structures for the Intel® IPP MPEG-4 video
decoder.

Video Components

Video components are defined as follows:
typedef enum {

IPP_VIDEO_LUMINANCE, /* Luminance component */
IPP_VIDEO_ CHROMINANCE, /* Chrominance component */
IPP_VIDEO_ALPHA /* Alpha component */

} IppVideoComponent;

Pixel Planes and Alpha Plane

The decoder’s output is stored in five planes (if shape mode selected). They are three texture
planes denoted by Y plane (luminance component), Cb plane and Cr plane (chrominance
components), one grayscale alpha plane denoted by A plane (alpha component) and one Binary
plane denoted by B plane (binary component).

The size of the Y plane relates to, but usually is not equal to, that of the VOL as a result of the
VOP expansion. Since luminance VOP is generally expanded (and padded) with 16 pixels to each
of the four directions, the width and height of the Y plane are 32 pixels larger than those of the
VOL respectively. Users are recommended to allocate memory for the VOP planes for their needs.
The primitives in this sections do not operate directly on the VOP planes, but on the block level.

The size (W, H) of Cb or Cr plane is half the size of Y plane, because chrominance VOPs are
expanded with 8 pixels to each direction.

The A and B plane has the same pixel size as the Y plane. All pixels in the Y/A/Cb/Cr plane
occupy 8 bits, while a pixel in the B plane occupies 1 bit.

Figure 12-2 shows the relationship among pixel plane, VOL and VOP.
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Three sets of pixel planes, each consists of a Y plane, a Cb plane and a Cr plane, should be 64-bit
aligned in user's allocation. They are referred to as current, forward and backward. Backward
pixel plane set is not required in Simple profile, because it does not support B-VOP.

Figure 12-2 Pixel Plane, VOL and VOP
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Macroblock Types

Macroblock types in Intra coded (I-), Predictive coded (P-) and Bidirectional Predictive coded

(B-) VOP are defined as following:

typedef enum {

IPP_VIDEO_INTER =0, /* P picture or P-VOP */
IPP_VIDEO_INTER_Q =1, /* P picture or P-VOP */
IPP_VIDEO_INTER4V =2, /* P picture or P-VOP */
IPP_VIDEO_INTRA =3, /* 1 and P picture, or 1- and P-VOP */
IPP_VIDEO_INTRA_Q =4, /* | and P picture, or I- and P-VOP */
IPP_VIDEO_INTER4V_Q =5, /* P picture or P-VOP (H.263 only)*/
IPP_VIDEO_DIRECT =6, /* B picture or B-VOP (MPEG-4 only) */
IPP_VIDEO_INTERPOLATE =7, /* B picture or B-VOP */
IPP_VIDEO_BACKWARD =8, /* B picture or B-VOP */
IPP_VIDEO_FORWARD =9 /* B picture or B-VOP */
IPP_VIDEO_NOTCODED = 10 /* B picture or B-VOP */
} IppMacroblockType;
E NOTE. About the Suffix:
) Q - Quantization Parameter should be updated in indicated macroblock.

4V - 4 blocks in indicated macroblock have respective motion vector,
otherwise, 4 blocks in indicated macroblock have same motion vector.

Motion Vector

12-6

Motion vector is defined as in “Motion Vector”

typedef struct {
Ippl6s dx;
Ippl6s dy;

} IppMotionVector;

Depending on the MB type, there are up to eight valid motion vector(s) in a MB. Below is the
vector manipulation scheme adopted by IPP MPEG-4 CODEC, where pMVForward and

pMvBackward denote the two vector buffers allocated for each MB:

*  Two buffers per MB in P or B-VOP, including pMVForward[4] and pMVBackward[4].
® Each element contains a block based motion vector, contiguously stored per each buffer.
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In P-VOP, only pMmvForward[ 7] is used and valid; pMvBackward[ ] is not used.

If MB type is “1PP_VIDEO_INTER” or “1PP_VIDEO_INTER_Q”, and if not transparent,
pMVForward[0]~[3] must be filled with the same decoded MV.

If MB is INTRA coded or skipped, pMVForward[0]~[3] should be padded with

zero MVs.

In B-VOP, pMVForward[] and pMvBackward[] may or may not be used, which depends on
the MB type.

If B_VOP, if MB type is not “1PP_VIDEO_DIRECT”, pMVForward[1]~[3] and
pMvBackward[1]~[3] are NOT used.

g NOTE. Coordinates are related to the absolute coordinate system shown in
e,

Figure 7-19 of ISO/IEC 14496-2.

Transparent Status

Transparent status is a three-state value in one byte, or 1pp8u. The three possible states are

defined as:

enum {
IPP_VIDEO_TRANSPARENT =0, /* Wholly transparent */
IPP_VIDEO_PARTIAL =1, /* Partially transparent */
IPP_VIDEO_OPAQUE =2 /* Opaque */

};

Transparent status is block based in MPEG-4. Thus,

One buffer per MB

Four elements per buffer

Each element occupies one byte (Ipp8u) for one block

The first element (for block 0) must be 32-bit aligned (which should be ensured by user)
MB transparent status could be known by evaluating the value of the whole word directly.

Quantization Parameter

Quantization parameters of intra-coded macroblocks should be stored in order to perform DC and
AC prediction for the intra-coded macroblocks spatially to the right and/or below, if they exist.

One row buffer for current dealt VOP.
The buffer is used for coefficient prediction.
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* Before decoding an “intra” or “intra+q” MB, the buffer saves the QPs of the upper MB
and left MB if they exist.

* Afteran “intra” or “intra+q” MB is decoded, the corresponding QP buffer (who stored
the MB spatially above before) should be updated by the current QP.

® Each element is one byte (1pp8u) for one MB.

Direction

Direction is concerned when performing DC/AC prediction and zigzag scan.

enum {
IPP_VIDEO_NONE =0,
IPP_VIDEO_HORIZONTAL =1,
IPP_VIDEO_VERTICAL =2
}:
Rectangle Plane
typedef structure _lppiRect {
int x;
int vy;
int width;
int height;
}

Bilinear Interpolation Type

Bilinear interpolation type is used for motion compensation and reconstruction.

enum {
IPP_VIDEO_INTEGER_PIXEL
IPP_VIDEO HALF_PIXEL_X
IPP_VIDEO HALF_PIXEL_Y
IPP_VIDEO HALF_PIXEL_XY

/* case “a” in Figure 12-3 */
/* case “b” in Figure 12-3 */
/* case “c” in Figure 12-3 */
/* case “d” in Figure 12-3 */

I
W NP O
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Figure 12-3 Halfpixel Prediction by Bilinear Interpolation
A B
X O X
a b
X Integer pixel position
O O O Half pixel position
c d
a=A
< % b=(A+B+1-RCONTROL) /2
D d=(A+B+1-RCONTROL) /2
c e=(A+B+C+D+2-RCONTROL) /4
A9152-01
Buffers

This section describes buffers and their layout required by Intel® IPP. The user must allocate

and/or initialize the buffers according to the following specifications:

®  Video plane buffers
User should allocate buffers to store the decoded picture (H.263) or video object (MPEG-4)
consisting of texture components (Y/Cb/Cr) and alpha components (binary/grayscale) if
shape coding is supported. The presence of each component depends on the VOL shape type
according to video_object_layer_shape. Table 12-1 details the dependency, where “x”
means required and “-” means not required.
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Table 12-1 Video Buffer Allocation Requirements
Texture Grayscale Alpha
VOL Shape Type Y/Cb/Cr Planes Binary Alpha Plane Plane
rectangular X - -
binary X X -
binary only - X -
grayscale X X X

12-10

Two sets of these buffers should be available — one for the current picture/\VVO, the other for
the previous (forward-reference) picture/VO; an additional set of buffers should also be
allocated if bi-directional prediction (B-VOP) is supported. A more detailed description of the
video planes could be found in section “Pixel Planes and Alpha Plane”.

Motion vector buffers

A motion vector buffer contains four elements of IppMotionVector data. Each element
contains a block based motion vector, contiguously stored per each buffer. A user should
allocate one MV buffer per MB for P-VOP; if B-VOP is supported, two MV buffers should be
available for bi-directional prediction.

If macroblock type is IPP_VIDEO_INTER or IPP_VIDEO_INTER_Q, but not
IPP_VIDEO_INTERA4YV, and if it is not transparent, the four elements must be filled with the
same MV.

If MB is INTRA coded or skipped, the four elements should be padded with zero MVs.

In B-VOP, the forward or backward MV buffer may or may not be used, which depends on
the MB type.

If MB type is not 1PP_VIDEO_DIRECT in B-VOP, elements [1]~[3] of either buffers are NOT
used; only elements [0] may be used.

Transparent status buffer

User should allocate one transparent status buffer for the MB. Elements, of type 1pp8u, are
block based, contiguously stored. There are 4 elements for a MB, corresponding to the 16x16
area.

% NOTE. The address of the first element (for block 0) must be 32-bit aligned,
_

which should be ensured by the user. MB transparent status is then detected by
evaluating the value of the whole word.
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Quantization parameter buffer

User should allocate one “row buffer” storing the quantization parameters (QPs) with one
byte (1pp8u) for each element. This buffer is used for coefficient prediction. Before decoding
an INTRA coded MB, the corresponding element in the QP buffer saves the QP of the MB of
the upper MB row. After an MB is decoded, the corresponding element (the element storing
QP of the MB above) should be updated by the QP of the current MB.

Coefficient buffers

User should allocate two coefficient buffers for Intra DC/AC prediction — a row buffer that
contains ((mb_num_per_row * 2 + 1) * 8) elements of Ipp16s, and a column buffer that
contains 16 elements of Ipp16s.

Every 8 elements of both row and column buffers, plus one element 8 units ahead in row
buffer, are used to perform DC/AC prediction for an INTRA coded block in a MB. Each
group stores the coefficient predictors of the neighbor block spatially upper or left to the
block currently to be decoded. Within every 8 elements, the first one stores the DC coefficient
and the others store quantized AC coefficients. A negative-valued DC coefficient signals that
this neighbor block is not INTRA coded, thus neither the DC nor the AC coefficients are
valid.

All DC elements in row buffer should be initialized to -1 prior to decoding each VOP. In
addition, the two DC elements in column buffer should also be initialized to -1 prior decoding
each MB row.

If the current MB/block is transparent, or the MB_Type is IPP_VIDEO_INTER/
IPP_VIDEO_INTER_Q/ IPP_VIDEO_INTER_4V, the corresponding DC elements in the
row buffer and column buffer should also be initialized to —1 to indicate that no predictor for
later AC/DC prediction.

The detailed coefficient buffer layout is illustrated in Figure 12-4.

BAB-mode buffer

User should allocate one BAB mode buffer storing the mode of each BAB. There are seven
types of BAB, and before decoding further shape information, the current BAB mode should
be decoded first.

The detail information about BAB mode can refer to subclause 7.6.1.6 of ISO/IEC 14496-2.
Motion vector for shape buffer

User should allocate one buffer storing the MVs. There is one MVs for a BAB, so the buffer
size decided by the BAB number of current plane.
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Figure 12-4

Coefficient Buffer Layout Chart

Row Buffer

Column Buffer

AC Horizontal
Horizontal AC Predictionl

AC Horizontal

DC Coefficient Prediction:
QFx[0]1 [0] = PQFx[0][0] + Fpl[0][0]//dc_scaler

AC Coefficient Prediction:
QFx[v] [0] = PQFxI[v][0] + (QFp[v][0] * QPp)//QPx v = 1 to 7

QFx[0] [ul = PQFx[0] [ul + (QFp[0][u]l] * QPp)//QPx u = 1 to 7

API:

IppStatus ippiPredictReconCoefIntra MPEG4_ 16s (
Ipplés * pSrcDst, Ipplés * pPredBufRow, Ipplés * pPredBufCol,
int curQP, int predQP, int predDir, int ACPredFlag,
IppVideoComponent videoComp

)i

A8418-01
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MPEG-4 Decoder Primitives

This section describes all of the MPEG4 Video Decoding Domain primitives. See:

Chapter 12 for a short listing of the all the primitives in this chapter.
The Index section for an alphabetic list of all IPPs.
The Contents which lists the IPPs as they appear in the chapter.

DecodePadMV_PVOP_MPEG4

Prototype
IppStatus ippiDecodePadMV_PVOP_MPEG4 (Ipp8u ** ppBitStream,

int * pBitOffset, IppMotionVector * pSrcMVLeftMB, IppMotionVector *
pSrcMVUpperMB, IppMotionVector * pSrcMVUpperRightMB, IppMotionVector
* pDstMVCurMB, Ipp8u * pTranspLeftMB, Ipp8u * pTranspUpperMB, Ipp8u *
pTranspUpperRightMB, Ipp8u * pTranspCurMB, int fcodeForward,
IppMacroblockType MBType);

Description
Decodes and pads four motion vectors of the non-intra macroblock in P-VOP.

The motion vector padding process is specified in subclause 7.6.1.6 of ISO/IEC 14496-2.

Input Arguments

ppBitStream - pointer to the pointer to the current byte in the bit stream buffer
pBitOffset — pointer to the bit position in the byte pointed to by *ppBitStrean.
*pBitOffset is valid within [0-7].

pSrcMVLeftMB

pSrcMVUpperMB

pSrcMVUpperRightMB — pointers to the motion vector buffers of the macroblocks specially
at the left, upper and upper-right side of the current macroblock respectively.
pTranspLeftMB

pTranspUpperVB

pTranspUpperRightMB

12-13
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pTranspCurMB — pointers to the transparent status buffers of the macroblocks specially at the
left, upper and upper-right side of, and the current macroblock respectively. Set to
IPP_VIDEO_TRANSPARENT if outside boundary (see Note below).

fcodeForward - a code equal to vop_fcode_forward in MPEG-4 bit stream syntax
MBType - the type of the current macroblock. If MBType is not equal to
IPP_VIDEO_INTER4V, the destination motion vector buffer is still filled with the same
decoded vector.

Output Arguments

ppBitStream — *ppBitStream is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer

pBitOffset — *pBitOffset is updated so that it points to the current bit position in the byte
pointed by *ppBitStream

pDstMVCurMB — pointer to the motion vector buffer of the current macroblock which contains
four decoded motion vectors

Returns

IppStsNoErr — no error

ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: ppBitStream, *ppBitStream, pBitOffset,
pTranspLeftMB, pTranspUpperMB, pTranspUpperRight, pTranspCurMB,
pDstMVCurMB
or

— At least one of following cases is true: *pBitOffset exceeds [0,7], fcodeForward
exceeds (0,7], MBType less than zero, transparent status or the motion vector buffer is not
32-bit aligned.

ippStsErr — status error

— Meet illegal code in bit stream which can not be looked up in VLC table

% NOTE. Any neighborhood macroblock outside the current VOP or video
.

packet or outside the current GOB (when short_video_header is ““1””) for which
gob_header_empty is “0” is treated as transparent, according to subclause
7.6.5in1SO/IEC 14496-2.
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DecodeMV_BVOP_Backward MPEG4

Prototype

IppStatus ippiDecodeMV_BVOP_Backward_MPEG4 (l1pp8u ** ppBitStream, int *
pBitOffset, IppMotionVector * pSrcDstMVB, int fcodeBackward);

Description

Decodes motion vectors of the macroblock in B-VOP backward mode. After decoding a
macroblock of backward mode only the backward predictor is set to the decoded backward vector.

Input Arguments

®* ppBitStream - pointer to the pointer to the current byte in the bit stream buffer

®* pBitOffset - pointer to the bit position in the byte pointed to by *ppBitStream.
*pBitOffset is valid within [0-7].

®  pSrcDstMVB — pointer to the backward motion vector predictor

* fcodeBackward — a code equal to vop_fcode_backward in MPEG-4 bit stream syntax

Output Arguments
®* ppBitStream — *ppBitStream is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer

* pBitOffset — *pBitOffset is updated so that it points to the current bit position in the byte
pointed by *ppBitStream

®  pSrcDstMVB — pointer to the backward motion vector of the current macroblock. The
backward motion vector predictor should be reset to zero at the beginning of each macroblock
row.

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: ppBitStream, *ppBitStream,
pBitOffset, pSrcDstMVB.

— At least one of following cases: *pBitOffset exceeds [0,7], fcodeBackward exceeds (0,7].
®  ippStsErr — status error
— Meet illegal code in bit stream which can not be looked up in VLC table
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DecodeMV_BVOP_Forward MPEG4

12-16

Prototype

IppStatus ippiDecodeMV_BVOP_Forward_MPEG4 (Ipp8u ** ppBitStream, int *
pBitOffset, IppMotionVector * pSrcDstMVF, int fcodeForward);

Description

Decodes motion vectors of the macroblock in B-VOP forward mode. After decoding a macroblock
of forward mode only the forward predictor is set to the decoded forward vector.

Input Arguments

®* ppBitStream - pointer to the pointer to the current byte in the bit stream buffer

®* pBitOffset — pointer to the bit position in the byte pointed to by *ppBitStream. *pBitOffset
is valid within [0-7]

®  pSrcDstMVF — pointer to the forward motion vector predictor

®* fcodeForward —a code equal to vop_fcode forward in MPEG-4 bit stream syntax

Output Arguments

®* ppBitStream— *ppBitStrean is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer

* pBitOffset — *pBitOffset is updated so that it points to the current bit position in the
byte pointed by *ppBitStream

®  pSrcDstMVF — pointer to the forward motion vector of the current macroblock. The forward
motion vector predictor should be reset to zero at the beginning of each macroblock row.

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: ppBitStream, *ppBitStream,
pBitOffset, pSrcDstMVF.
or
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— At least one of following cases is true:
— *pBitOffset exceeds [0,7]
— fcodeForward exceeds [0,7]
— The motion vector buffer is not 32-bit aligned
®  ippStsErr - status error
— Meet illegal code in bit stream which can not be looked up in VLC table

DecodeMV_BVOP_Interpolate. MPEG4

Prototype

IppStatus ippiDecodeMV_BVOP_Interpolate_MPEG4 (Ipp8u ** ppBitStream, int
* pBitOffset, IppMotionVector * pSrcDstMVF, IppMotionVector *
pSrcDstMVB, int fcodeForward, int fcodeBackward);

Description

Decodes motion vectors of the macroblock in B-VOP interpolate mode. After decoding a
macroblock of interpolate mode both the forward and backward predictor are updated separately
with the decoded vectors of the same type (forward/backward).

Input Arguments

* ppBitStream - pointer to the pointer to the current byte in the bit stream buffer

®* pBitOffset — pointer to the bit position in the byte pointed to by *ppBitStream. *pBitOffset
is valid within [0-7].

®  pSrcDstMVF - pointer to the forward motion vector predictor. The forward motion vector
predictor should be reset to zero at the beginning of each macroblock row.

®  pSrcDstMVB - pointer to the backward motion vector predictor. The backward motion vector
predictor should be reset to zero at the beginning of each macroblock row.

®* fcodeForward —a code equal to vop_fcode_forward in MPEG-4 bit stream syntax
®* TfcodeBackward — a code equal to vop_fcode_backward in MPEG-4 bit stream syntax

Output Arguments

®* ppBitStream— *ppBitStrean is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer

12-17
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* pBitOffset — *pBitOffset is updated so that it points to the current bit position in the
byte pointed by *ppBitStream

®  pSrcDstMVF — pointer to the forward motion vector of the current macroblock

®  pSrcDstMVB - pointer to the backward motion vector of the current macroblock

Returns
®  ippStsNoErr —no error
®  ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: ppBitStream *ppBitStream

pBitOffset, pSrcDstMVF, pSrcDstMVB
or

— At least one of the following cases is true:
— *pBitOffset exceeds [0,7]
— fcodeForward or fcodeBackward exceeds (0,7]
®  ippStsErr - status error
— Meet illegal code in bit stream which can not be looked up in VLC table

DecodeMV_BVOP_ Direct MPEG4

Prototype

IppStatus ippiDecodeMV_BVOP_Direct_MPEG4 (Ipp8u ** ppBitStream, int *
pBitOffset, const IppMotionVector * pSrcMV, IppMotionVector *
pDstMVF, IppMotionVector * pDstMVB, Ipp8u * pTranspSrcMB, int TRB, int
TRD) ;

Description
Decodes motion vector(s) of the macroblock in B-VOP using direct mode.

Input Arguments
®* ppBitStream - pointer to the pointer to the current byte in the bit stream buffer

®* pBitOffset - pointer to the bit position in the byte pointed to by *ppBitStream.
*pBitOffset is valid within [0-7].
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pSrcMV - pointer to the motion vector buffer of the co-located macroblock in the most
recently decoded I- or P-VOP

pTranspSrcMB — pointer to the transparent status buffer of the co-located macroblock
TRB - the difference in temporal reference of the B-VOP and the previous reference VOP

TRD - the difference in temporal reference of the temporally next reference VOP with
temporally previous reference VOP

Output Arguments

ppBitStream — *ppBitStream is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer

pBitOffset — *pBitOffset is updated so that it points to the current bit position in the byte
pointed by *ppBitStream

pDstMVF — pointer to the forward motion vector buffer of the current macroblock which
contains decoded forward motion vector

pDstMVB — pointer to the backward motion vector buffer of the current macroblock which
contains decoded backward motion vector

Returns

ippStsNoErr —no error

ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: ppBitStream, *ppBitStream,
pBitOffset, pSrcMV , pTranspSrcMB, pDstMVF, pDstMVB
or

— At least one of following cases is true: *pBitOffset exceeds [0,7], TRB <=0, TRD <=0,
or transparent status buffer is not 32-bit aligned.

ippStsErr — status error
— Meet illegal code in bit stream which can not be looked up in VLC table

12-19



12 Intel® IPP on Intel® PCA Processors

DecodeMV_BVOP_DirectSkip. MPEG4
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Prototype

IppStatus ippiDecodeMV_BVOP_DirectSkip_MPEG4 (const lIppMotionVector *
pSrcMV, IppMotionVector * pDstMVF, IppMotionVector * pDstMVB, lpp8u *
pTranspSrcMB, int TRB, int TRD);

Description

Decodes motion vector(s) of the macroblock in B-VOP using direct mode when the current
macroblock is skipped. A macroblock in B-VOP is skipped if modb == “1".

Description

®  pSrcMV - pointer to the motion vector buffer of the co-located macroblock in the most
recently decoded I- or P-VOP

® pTranspSrcMB — pointer to the transparent status buffer of the co-located macroblock

®* TRB -the difference in temporal reference of the B-VOP and the previous reference VOP

®* TRD - the difference in temporal reference of the temporally next reference VOP with
temporally previous reference VOP

Output Arguments

®* pDstMVF — pointer to the forward motion vector buffer of the current macroblock which
contains decoded forward motion vector

®* pDstMVB — pointer to the backward motion vector buffer of the current macroblock which
contains decoded backward motion vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: pSrcMv, pTranspSrcMB ,
pDstMVF, pDstMVB
or
— At least one of below cases is true: TRB <=0, TRD <=0, or transparent status buffer is
not 32-bit aligned.
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LimitMVToRect MPEG4

Prototype

IppStatus ippiLimitMVToRect MPEG4 (const IppMotionVector * pSrcMV,
IppMotionVector *pDstMV, IppiRect * pRectVOPRef, int Xcoord, int
Ycoord, int size);

Description
Limit the motion vector of current block/macroblock into the expanded bounding rectangle.

Input Arguments

®  pSrcMV - pointer to the motion vector of current block or macroblock
®  pRectVOPRef - pointer to the bounding rectangle

® Xcoord, Ycoord - the coordinates of the current block or macroblock
® size - the size of block or macroblock

Output Arguments
pDstMV — pointer to the limited motion vector

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: pSrcMV, pDstMV, or pRectVOPRef.
or
— At least one of following case is true: size is neither BLOCK_SIZE nor MB_SIZE; the
width (or height) of rectangle is less than twice of size.
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PredictReconCoefIntra MPEG4 16s
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Prototype

IppStatus ippiPredictReconCoefintra_MPEG4_16s (lppl6s * pSrcDst, lppl6s
* pPredBufRow, Ippl6s * pPredBufCol, int curQP, int predQP, int
predDir, int ACPredFlag, IppVideoComponent videoComp);

Description

Performs adaptive DC/AC coefficient prediction for an intra block. Prior to the function call,
prediction direction (predDir) should be selected as specified in subclause 7.4.3.1 of ISO/IEC
14496-2.

Description

® pSrcDst - pointer to the coefficient buffer which contains the quantized coefficient residuals
(PQF) of the current block

® pPredBufRow — pointer to the coefficient row buffer
®* pPredBufCol - pointer to the coefficient column buffer

® curQP —quantization parameter of the current block. curQP may equal to predQP especially
when the current block and the predictor block are in the same macroblock.

®* predQP - quantization parameter of the predictor block

®* predDir -indicates the prediction direction which takes one of the following values:
— IPP_VIDEO_HORIZONTAL - predict horizontally
— IPP_VIDEO_VERTICAL - predict vertically

® ACPredFlag - a flag indicating if AC prediction should be performed. It is equal to
ac_pred_flag in the bit stream syntax of MPEG-4

® videoComp - video component type (luminance, chrominance or alpha) of the current block

Output Arguments

®* pSrcDst - pointer to the coefficient buffer which contains the quantized coefficients (QF) of
the current block

®* pPredBufRow — pointer to the updated coefficient row buffer
® pPredBufCol — pointer to the updated coefficient column buffer
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% NOTE. Buffer update: Update the AC prediction buffer (both row and column
= buffer).

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the pointers is NULL: pSrcDst, pPredBufRow, or pPredBufCol.
or
At least one the following cases: curQP <=0, predQP <= 0, preDir exceeds [1,2].
or
— At least one of the pointers pSrcDst, pPredBufRow, or pPredBufCol is not 32-bit
aligned.

PadCurrent 16x16 MPEG4 8u I
PadCurrent 8x8§ MPEG4 8u I

Prototype

IppStatus ippiPadCurrent_16x16_MPEG4 8u_1l (const Ipp8u * pSrcBAB, int
stepBinary, Ipp8u * pSrcDst, int stepTexture);

IppStatus ippiPadCurrent_8x8 MPEG4_8u_1 (const Ipp8u * pSrcBAB, int
stepTexture, Ipp8u * pSrcDst);

Description

Performs horizontal and vertical repetitive padding process on luminance/alpha macroblock or
chrominance block. The horizontal and vertical repetitive padding processes are specified in
subclause 7.6.1.1 and 7.6.1.2 of ISO/IEC 14496-2 respectively.

Input Arguments
® pSrcDst - pointer to the block to be padded
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®* stepTexture — width of the source texture (Luminance, Chrominance or Grayscale alpha)
plane (numbered with pixel)

® stepBinary — width of the source binary alpha plane (for 16X16 version) or source binary
alpha buffer (for 8X8 version) (numbered with byte)

®  pSrcBAB - pointer to the binary alpha plane (for 16X16 version) or binary alpha block buffer
(for 8X8 version). In 8X8 version, the buffer contains 32 bytes (256 bits) for 16 by 16
luminance or alpha block, or 8 bytes (64 bits) for 8 by 8 chrominance block.

% NOTE. For chrominance components, the BAB is generated by subsampling
_ the shape block of the corresponding luminance component.

Output Arguments
pSrcDst — pointer to the padded block

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the pointers is NULL: pSrcDst or pSrcBAB.
or

— In 16 by 16 case, at least one of below case: stepTexture < 16, stepBinary < 2,
stepTexture is not 4 multiple.
or

— In 8 by 8 case, at least one of below case: stepTexture < 8, stepTexture is not 4 multiple.
or

— pSrcDst is not 32-bit aligned.
or

— All the elements of current BAB are zero.
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PadMBHorizontal MPEG4 8u

Prototype

IppStatus ippiPadMBHorizontal MPEG4 8u (const lpp8u * pSrcY, const Ipp8u
* pSrcCb, const Ipp8u * pSrcCr, const Ipp8u * pSrcA, Ipp8u * pDstY,
Ipp8u * pDstCb, Ipp8u * pDstCr, Ipp8u * pDstA, int stepYA, int
stepCbCr);

Description

Performs horizontal extended padding process on exterior macroblock, which includes luminance,
chrominance and alpha (if available) blocks, immediately next to boundary macroblock.

% NOTE. The MB version pads all blocks of luminance, chrominance and alpha

= (if exists) in one MB, while 16x16 version could be used to pad only 4
luminance or alpha blocks, and 8x8 version to pad one chrominance (Cb or Cr)
block.

Input Arguments
®* stepYA —width of the luminance or alpha planes. (numbered with pixel)
® stepCbCr - width of the Chrominance planes. (humbered with pixel)

® pSrcy - pointer to one of the vertical border of the boundary luminance blocks that are
chosen to pad the exterior macroblock

®  pSrcCb —pointer to one of the vertical border of the boundary Cb block that is chosen to pad
the exterior macroblock

®  pSrcCr — pointer to one of the vertical border of the boundary Cr block that is chosen to pad
the exterior macroblock

® pSrcA - pointer to one of the horizontal border of the boundary alpha blocks that are chosen
to pad the exterior macroblock. If pSrcA equals to NULL, then no alpha plane is available.
Otherwise, the alpha plane should be padded.

Output Arguments
®* pDstY - pointer to the padded exterior luminance blocks
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® pDstCb — pointer to the padded exterior Cb block
® pDstCr — pointer to the padded exterior Cr block
®* pDstA - pointer to the padded exterior alpha blocks

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: pSrcY, pSrcCb, pSrcCr, pDstY,
pDstCh, pDstCr.
or

— If pSrcA = NULL, pDstA = NULL or pDstA is not 32-bit aligned.
or

— At least one of pDstY, pDstCh, or pDstCr is not 32-bit aligned.
or

— At least one of the following conditions is true:
—stepYA <16
—stepCbCr< 8
— stepYA or stepChCr is not a multiple of 4

PadMBVertical MPEG4 8u

12-26

Prototype

IppStatus ippiPadMBVertical _MPEG4_8u (const Ipp8u * pSrcY, const Ipp8u *
pSrcCb, const Ipp8u * pSrcCr, const lpp8u * pSrcA, lIpp8u * pDstY,
Ipp8u * pDstCb, Ipp8u * pDstCr, Ipp8u * pDstA, int stepYA, int
stepCbCr);

Description

Performs vertical extended padding process on exterior macroblock, which includes luminance,
chrominance and alpha (if available) blocks, immediately next to boundary macroblock.
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% NOTE. The MB version pads all blocks of luminance, chrominance and alpha
_

(if exist) in one MB, while 16X16 version could be used to pad only 4
luminance or alpha blocks, and 8X8 version to pad one chrominance (Cb or
Cr) block.

Input Arguments

stepYA — width of the Luminance and/or alpha planes
stepCbCr — width of the Chrominance planes

pSrcY — pointer to one of the horizontal border of the boundary luminance blocks that are
chosen to pad the exterior macroblock

pSrcCb — pointer to one of the horizontal border of the boundary Cb block that is chosen to
pad the exterior macroblock

pSrcCr — pointer to one of the horizontal border of the boundary Cr block that is chosen to
pad the exterior macroblock

pSrcA — pointer to one of the horizontal border of the boundary alpha blocks that are chosen

to pad the exterior macroblock. If pSrcA equals to NULL, then no alpha plane is available.
Otherwise, the alpha plane should be padded in MB version.

Output Arguments

pDstY — pointer to the padded exterior luminance blocks
pDstCb — pointer to the padded exterior Ch block
pDstCr — pointer to the padded exterior Cr block

pDstA — pointer to the padded exterior alpha blocks

Returns

ippStsNoErr — no error
ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL:
pSrcY
pSrcCb
pSrcCr
pDstY
pDstCb
pDstCr
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— At least one of below case: stepYA < 16, stepCbCr < 8, stepYA or stepCbCr is not 4
multiple.
— At least one of the following is not 32-bit aligned:
pSrcY
pSrcCb
pSrcCr
pDstY
pDstCb
pDstCr

— If pSrcA is not NULL, pSrcA is not 32-bit aligned, pDstA is NULL or pDstA is not
32-bit aligned.

PadMBGray MPEG4 8u

12-28

Prototype

IppStatus ippiPadMBGray MPEG4_8u (lpp8u grayVal, Ipp8u * pDstY, Ipp8u *
pDstCb, Ipp8u * pDstCr, Ipp8u * pDstA, int stepYA, int stepCbCr);

Description

Fills gray value in exterior macroblock (includes luminance, chrominance and alpha (if available)
blocks) that is not located next to any boundary macroblock.

E NOTE. The MB version pads all blocks of luminance, chrominance and alpha

_ (if exist) in one MB, while 16X16 version could be used to pad only 4
luminance or alpha blocks, and 8X8 version to pad one chrominance (Cb or
Cr) block.

Input Arguments

* gravely —the gray value to fill the exterior macroblock/block. It should be set to
2bits_per_pixel -1 \yhere bits_per_pixel = 8 here.

® stepYA - width of the Luminance and/or alpha planes.(numbered with pixel)
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® stepCbCr - width of the Chrominance planes.

Output Arguments

® pDstY - pointer to the padded exterior luminance blocks. pDstY should be 32-bit aligned.

®* pDstCb - pointer to the padded exterior Kb block. DstCb should be 32-bit aligned.

® pDstCr - pointer to the padded exterior Cr block. pDstCr should be 32-bit aligned.

®* pDstA - pointer to the padded exterior alpha blocks. If pDstA equals to NULL, then no alpha
plane is available. Otherwise, the alpha plane should be padded in MB version. pDstA should
be 32-bit aligned.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr —bad arguments
— At least one of the following pointers is NULL: pDstY, pDstCb, pDstCr.
or
— At least one of below case: stepYA < 16, stepChCr < 8, grayvalue <=0, stepYA or
stepCbCr is not a multiple of 4.
or

— At least one of pDstY, pDstCb, pDstCr not 32-bit aligned, If pDstA !'= NULL, pDstA not
32-bit aligned.

PadMV_MPEG4

Prototype
IppStatus ippiPadMV_MPEG4 (IppMotionVector * pSrcDstMV, Ipp8u * pTransp);

Description
Performs motion vector padding for a macroblock.

Input Arguments
®  pSrcDstMV — pointer to motion vector buffer of the current macroblock
® pTransp — pointer to transparent status buffer of the current macroblock
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Output Arguments
pSrcDstMV — pointer to motion vector buffer in which the motion vectors have been padded

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — Bad arguments

— At least one of the following pointers NULL: pSrcDstMV, pTransp
or

— Transparent status or motion vector buffer is not 32-bit aligned.

DecodeVLCZigzag IntraDCVLC _MPEG4 1ulé6s
DecodeVLCZigzag IntraACVLC _MPEG4 1ulé6s

Prototype

IppStatus ippiDecodeVLCZigzag IntraDCVLC_MPEG4_1ul6s(lpp8u **
ppBitStream, int * pBitOffset, lppl6s * pDst, int predDir,
IppVideoComponent videoComp);

IppStatus ippiDecodeVLCZigzag IntraACVLC_MPEG4_1ul6s(lpp8u **
ppBitStream, int * pBitOffset, Ippl6s * pDst, int predDir);

Description
Performs VLC decoding and inverse zigzag scan for one intra coded block.

Input Arguments
®* ppBitStream - pointer to the pointer to the current byte in the bitstream buffer
®* pBitOffset - pointer to the bit position in the byte pointed to by *ppBitStream.
*pBitOffset is valid within [0-7].
Bit Position in one byte: |[Most Least|
*pBitOffset O 1 2 3 4 5 6 7
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®* predDir — AC prediction direction which is used to decide the zigzag scan pattern. It takes
one of the following values:

IPP_VIDEO_NONE AC prediction not used; perform classical zigzag scan;

IPP_VIDEO_HORIZONTAL Horizontal prediction; perform alternate-vertical zigzag
scan;

IPP_VIDEO_VERTICAL Vertical prediction; thus perform alternate-horizontal
zigzag scan.

®* videoComp - video component type (luminance, chrominance or alpha) of the current block

Output Arguments

®* ppBitStream — *ppBitStream is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer

* pBitOffset — *pBitOffset is updated so that it points to the current bit position in the byte
pointed by *ppBitStream

®* pDst - pointer to the coefficient buffer of current block. Should be 32-bit aligned

Returns

®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

At least one of the pointers is NULL: ppBitStream, *ppBitStream, pBitOffset, pDst.
or

At least one of below case: *pBitOffset exceeds [0,7], preDir exceeds [0,2].

or

pDst is not 32-bit aligned

®  ippStsErr

=

In ippiDecodeVLCZigzag_IntraDCVLC_MPEG4 1ul6s, dc_size > 12
At least one of mark bit equals to zero

Meet illegal stream which can not be looked up in VLC table

Meet forbidden code in VLC FLC table

If the number of coefficients beyond 64

NOTE. The IntraDCVLC version uses Intra DC VLC solution to decode Intra
DC coefficients, while the IntraACVLC version uses Intra AC VLC solution to
decode Intra DC coefficient.
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DecodeVLCZigzag Inter MPEG4 1ul6s

12-32

Prototype

IppStatus ippiDecodeVLCZigzag Inter_ MPEG4_1ul6s(lpp8u ** ppBitStream,
int * pBitOffset, Ippl6s * pDst);

Description
Performs VLC decoding and inverse zigzag scan for one inter coded block.

Input Arguments
®* ppBitStream - pointer to the pointer to the current byte in the bit stream buffer

®* pBitOffset - pointer to the bit position in the byte pointed to by *ppBitStream.
*pBitOffset is valid within [0-7].

Output Arguments
®* ppBitStream — *ppBitStream is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer

* pBitOffset — *pBitOffset is updated so that it points to the current bit position in the byte
pointed by *ppBitStream

®* pDst - pointer to the coefficient buffer of current block. Should be 32-bit aligned.

Returns
® ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: ppBitStream, *ppBitStream, pBitOffset,
pDst
or

— pDst is not 32-bit aligned
or

— *pBitOffset exceeds [0,7].
® ippStsErr - status error
— At least one of mark bit equals to zero
— Meet illegal stream which can not be looked up in VLC table
— Meet forbidden code in VLC FLC table
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— If the number of coefficients beyond 64

QuantInvintra MPEG4 16s 1
Quantinvinter MPEG4 16s I

Prototype

IppStatus ippiQuantinvintra MPEG4_16s_I1(lppl6és * pSrcDst, int QP, const
Ipp8u * pQMatrix, IppVideoComponent videoComp);

IppStatus ippiQuantinvinter_MPEG4_16s_I1(lppl6s * pSrcDst, int QP, const
Ipp8u * pQMatrix);

Description

Performs inverse quantization on intra/inter coded block.

This function supports bits_per_pixel = 8. Mismatch control is performed for the first MPEG-4
mode inverse quantization method.

®  The output coefficients are clipped to the range: [-2048, 2047].

®  Mismatch control is performed for the first inverse quantization method.

Input Arguments
® pSrcDst — pointer to the input (quantized) intra/inter block
® QP - quantization parameter (quantiser_scale)

®  pQMatrix — pointer to quantization weighting matrix. If pQMatrix is NULL, this function
will use the H.263 mode inverse quantization method; otherwise, it will use the MPEG-4
mode method.

® videoComp — (Intra version only.) Video component type of the current block. Takes one of
the following flags: IPP_VIDEO_LUMINANCE, IPP_VIDEO_CHROMINANCE,
IPP_VIDEO_ALPHA.

Output Arguments
® pSrcDst - pointer to the output (dequantized) intra/inter block

Returns
®  ippStsNoErr —no error
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® ippStsBadArgErr — bad arguments
— If pSrcDst is NULL.
or
— IfQP<=0.
or
— videoComp is none of IPP_VIDEO_LUMINANCE, IPP_VIDEO_CHROMINANCE
and IPP_VIDEO_ALPHA.

DecodeBlockCoef Intra MPEG4 1u8u

12-34

Prototype

IppStatus ippiDecodeBlockCoef _Intra_MPEG4_1u8u (Ipp8u ** ppBitStream,
int *pBitOffset, Ipp8u *pDst, int step, lppl6s *pCoefBufRow, Ippl6s
*pCoefBufCol, Ipp8u curQP, Ipp8u *pQPBuf, const Ipp8u *pQMatrix, int
blocklndex, int intraDCVLC, int ACPredFlag);

Description

Decodes the INTRA block coefficients. Inverse quantization, inversely zigzag positioning, and
IDCT, with appropriate clipping on each step, are performed on the coefficients. The results are
then placed in the output frame/plane on a pixel basis.

For INTRA block, the output values are clipped to [0, 255] and written to corresponding block
buffer within the destination plane.

g NOTE. This function will be used only when at least one non-zero AC
_ coefficient of current block exists in the bit stream. DC only condition will be

handled in another function.

Input Arguments
®* ppBitStream— pointer to the pointer to the current byte in the bit stream buffer. There is no
boundary check for the bit stream buffer.
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®* pBitOffset — pointer to the bit position in the byte pointed to by *ppBitStream.
*pBitOffset is valid within [0-7].

® step — width of the destination plane

® pCoefBufRow — pointer to the coefficient row buffer

® pCoefBufCol - pointer to the coefficient column buffer

®  curQP - quantization parameter of the macroblock which the current block belongs to

®*  pQPBuT - pointer to the quantization parameter buffer

®* pQMatrix — pointer to quantization weighting matrix. If pQMatrix is NULL, this function
will use the H.263 mode inverse quantization method; otherwise, it will use the MPEG-4
mode method.

®* blocklIndex — block index indicating the component type and position as defined in
subclause 6.1.3.8, Figure 6-5 of ISO/IEC 14496-2. Furthermore, index 6 to 9 indicate the
alpha blocks spatially corresponding to luminance block 0 to 3 in the same macroblock.

® intraDCVLC - a code determined by intra_dc_vlc_thr and QP. This allows a mechanism to
switch between two VLC for coding of Intra DC coefficients as per Table 6-21 of ISO/IEC
14496-2. If the current block is a alpha block, the parameter “intraDCVLC” should not be
zero.

® ACPredFlag —a flag equal to ac_pred_flag (of luminance) or ac_pred_flag_alpha (of alpha
block) indicating if the ac coefficients of the first row or first column are differentially coded
for intra coded macroblock.

Output Arguments
®* ppBitStream—*ppBitStream is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer

®* pBitOffset — *pBitOffset is updated so that it points to the current bit position in the
byte pointed by *ppBitStream

® pDst - pointer to the block in the destination plane. pDst should be 64-bit aligned.
® pCoefBufRow — pointer to the updated coefficient row buffer.

% NOTE. The coefficient buffers should be updated according to the predefined
= structure. See “Buffers”.

® pCoefBufCol - pointer to the updated coefficient column buffer
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E NOTE. The accuracy of the output values is ““1” relative to the reference code.
_

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: ppBitStream, *ppBitStreanm,
pBitOffset, pCoefBufRow, pCoefBufCol, pQPBuf, pDst.
or

— At least one of the below case: *pBitOffset exceeds [0,7], curQP exceeds (1, 31),
blocklIndex exceeds [0,9], step is not the multiple of 8, intraDCVLC is zero while
blocklIndex greater than 5.
or

— pDst is not 64-bit aligned

®  ippStsErr — status error
Refer to “DecodeVLCZigzag_Inter MPEG4 1ul6s”.

DecodeBlockCoef Inter MPEG4 1ulé6s

Prototype

IppStatus ippiDecodeBlockCoef _Inter MPEG4_1ul6s (lpp8u ** ppBitStream,
int * pBitOffset, lppl6s * pDst, int QP, const Ipp8u * pQMatrix);

Description

Decodes the INTER block coefficients. Inverse quantization, inversely zigzag positioning and
IDCT, with appropriate clipping on each step, are performed on the coefficients. The results
(residuals) are placed in a contiguous array of 64 elements.

For INTER block, the output buffer holds the residuals for further reconstruction.
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Input Arguments

ppBitStream — pointer to the pointer to the current byte in the bit stream buffer. There is no
boundary check for the bit stream buffer.

pBitOffset — pointer to the bit position in the byte pointed to by *ppBitStrean.
*pBitOffset is valid within [0-7]

QP — quantization parameter

pQMatrix — pointer to quantization weighting matrix. If pQMatrix is NULL, this function
will use the H.263 mode inverse quantization method; otherwise, it will use the MPEG-4
mode method.

Output Arguments

ppBitStream— *ppBitStream is updated after the block is decoded, so that it points to the
current byte in the bit stream buffer

pBitOffset — *pBitOffset is updated so that it points to the current bit position in the
byte pointed by *ppBitStream

pDst - pointer to the decoded residual buffer (a contiguous array of 64 elements of Ipp16s
data type)

Returns

ippStsNoErr —no error
ippStsBadArgErr — bad arguments
— At least one of the following pointers is Null:

ppBitStream
*ppBitStream

pBitOffset
pDst
— At least one of the below case:
*pBitOffset exceeds [0,7], QP <=0;
— pDst not 64-bit aligned

ippStsErr - status error. Refer to ippStsErr of
“DecodeVLCZigzag_Inter MPEG4_1ul6s”.

E NOTE. The accuracy of the output values is “1” relative to the reference code.
_

12-37



12 Intel® IPP on Intel® PCA Processors

DecodeCAEIntraH MPEG4 1u8u
DecodeCAEIntraV_MPEG4 1u8u

12-38

Prototype

IppStatus ippiDecodeCAEIntraH_MPEG4_1u8u(lpp8u ** ppBitStream, int
*pBitOffset, Ipp8u * pBinarySrcDst, int step, int blocksize);

IppStatus ippiDecodeCAEIntraV_MPEG4_1u8u (Ipp8u ** ppBitStream, int
*pBitOffset, Ipp8u * pBinarySrcDst, int step, int blocksize) ;

Description

Performs Context Arithmetic Code decoding in intra macroblock. H indicates scan type is
horizontal. V indicates scan type is vertical. Convert ratio is supported in these functions.

Input Arguments

®* ppBitStream - pointer to the pointer to the current byte from which the intra block starts

®* pBitOffset — pointer to the bit position in the byte pointed to by *ppBitStream. *pBitOffset
is valid within [0-7]

® pBinarySrcDst — pointer to the Source-Dest Binary macroblock the left and top border
should be loaded before

®* step - width of source-dest binary plane, in bytes

®* blocksize — macroblock size, if convert ratio take effects, it means subsampled macro
block size

Output Arguments

* ppBitStream — pointer to the pointer to the current byte from which the intra block starts

* pBitOffset — pointer to the bit position in the byte pointed to by *ppBitStream. *pBitOffset
is valid within [0-7]

® pBinarySrcDst — pointer to the Source-Dest Binary macroblock the left and top border
should be loaded before

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr - bad arguments
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— At least one of the following pointers is NULL: ppBitStream, *ppBitStream,
pBitOffset, pBinaryDst
or
Blocksize is not 16, 8 or 4.
or

— *pBitOffset exceeds [0,7]

DecodeCAEInterH MPEG4 1u8u
DecodeCAEInterV_MPEG4 1u8u

Prototype

IppStatus ippiDecodeCAEInterH_MPEG4_1u8u (Ipp8u ** ppBitStream, int *
pBitOffset, const Ipp8u * pBinarySrcPred, int offsetPred, lpp8u *
pBinarySrcDst, int step, int blocksize);

IppStatus ippiDecodeCAEInterV_MPEG4_1u8u (Ipp8u ** ppBitStream, int *
pBitOffset, const Ipp8u * pBinarySrcPred, int offsetPred, Ipp8u *
pBinarySrcDst, int step, int blocksize);

Description

Performs Context Arithmetic Code decoding in inter macroblock. H indicates scan type is
horizontal. V indicates scan type is vertical. Convert ratio is supported in these functions.

Input Arguments

®* ppBitStream - pointer to the pointer to the current byte from which the intra block starts

®* pBitOffset — pointer to the bit position in the byte pointed to by *ppBitStream.
*pBitOffset is valid within [0-7]

® pBinarySrcPred — pointer to the related macroblock in the reference binary plane, the left

and top border should be loaded before. But pointer points to top-left corner of this macro
block, not the extended zone.

®* pBinarySrcDst — pointer to the Source-Dest Binary macroblock the left and top border
should be loaded before

* offsetPred - the bit position of first pixel in reference macroblock, valid within Bits 0 to 7
Where:

— MSB=zero (0)
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12-40

— LSB=seven (7)
Bit Position in one byte: |[Most Least|

*pBitOffset O 1 2 3 4 5 6 7
step — width of source-dest binary plane and reference plane, in byte. If blocksize not equals
to 16, it indicates binary buffer step.
blocksize — macroblock size, if convert ratio take effects, it means subsampled macro
block size

% NOTE. Reference Binary plane and current Binary plane have same step. If
.

blocksize does not equal 16 (convert ratio take effects), then step indicates both
reference binary buffer and current binary buffer.

Output Arguments

ppBitStream — pointer to the pointer to the current byte from which the intra block starts
pBitOffset — pointer to the bit position in the byte pointed to by *ppBitStrean.
*pBitOffset is valid within [0-7]

pBinarySrcDst - pointer to the Source-Dest Binary macroblock the left and top border
should be loaded before

Returns

ippStsNoErr —no error
ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: ppBitStream, *ppBitStream,
pBitOffset, pBinaryDst.
or
— *pBitOffset exceeds [0,7] or offsetPred exceeds [0,7]
or
— step<?2
or
— Blocksizeisnot 16,8 or 4
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DecodeMVS MPEG4

Prototype
IppStatus, ippiDecodeMVS_MPEG4 (Ipp8u **ppBitStream, int *pBitOffset,

IppMotionVector * pSrcDstMVS const Ipp8u * pSrcBABMode, int
stepBABMode, const IppMotionVector * pSrcMVLeftMB, const
IppMotionVector * pSrcMVUpperMB,const IppMotionVector *
pSrcMVUpperRightMB, const Ipp8u * pTranspLeftMB,const lIpp8u *
pTranspUpperMB, const Ipp8u * pTranspUpperRightMB, int predFlag)

Description
Decode MVs (Motion Vector of shape) according to the spec.

Input Arguments

ppBitStream — Pointer to the pointer to the current byte in the bit stream buffer.
PBitOffset — Pointer to the bit position in the byte pointed by *ppBitStream. Valid within 0
to 7.

pSrcDstMVs — Pointer to the shape motion vector buffer of the current BAB.
pSrcBABMode — Pointer to the BAB mode buffer of current BAB, which stored in the BAB
mode plane.

stepBMBMode — The width of the BAB mode plane.

pSrcMVLeftMB, pSrcMVUpperMB, pSrcMVUpperRightMB - Pointers to the motion
vector buffers of the macroblocks spacially at the left, upper and upper-right side of the
current macroblock respectively.

pTranspLeftMB, pTranspUpperMB, pTranspUpperRightMB, pTranspCurMB —
Pointers to the transparent status buffers of the macroblocks, spacially at the left, upper, and
upper-right side of, and the current macroblock respectively.

PredFlag — The flag will be set zero, while the current VOP is BVOP or the current VOL is
shape only mode; else, the flag is nonzero.

Output Arguments

PSrcDstMVS — Pointer to the decoded motion vector of shape.
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Returns
* |PP status code
® ippStsBadArgErr — bad arguments

— At least one of the pointers: *ppBitStream, ppBitStream, pBitOffset, pSrcDstMVS,
SrcBABMod, pSrcMVLeftMB, pSrcMVUpperMB, pSrcMVUpperRightMB,
pTranspLeftMB, pTranspUpperMB, pTranspUpperRightMB is NULL.

— BAD_ARGUMENT_DEFINITION:

While stepBMBMode <= 0, or *pBitOffset exceeds [0,7].

% NOTE. Only when the BAB_TYPE is not equal to Transparent, Opaque and
= IntraCAE, the MVs need to be decoded.

PadMBOpaque MPEG4 8u P4R

12-42

Prototype

IppStatus ippiPadMBOpaque_MPEG4_8u_P4R (const 1pp32u *
pSrcTrasptMBLeft, Ipp8u * pSrcDstCurrY, lpp8u * pSrcDstCurrCb, Ipp8u *
pSrcDstCurrCr, Ipp8u * pSrcDstCurrA, Ipp8u * pSrcDstPadded, int iMBX, int
iMBY, int stepYA, int stepCbCr);

Description

Performs general padding as current macroblock is opaque. What this function do is padding it's
necessary neighboring macroblocks.

Input Arguments

®  pSrcDstCurrY - pointer to the top-left of current luminance (Y) block in current VOP.

®  pSrcDstCurrCb — pointer to the top-left of current chrominance (Cb) block in current VOP.
® pSrcDstCurrCr — pointer to the top-left of current chrominance (Cr) block in current VOP.
® pSrcDstCurrA - pointer to the top-left of current alpha (A) block in current VOP.

® pSrcTrasptMBLeft - pointer to left macroblock's transparent buffer.
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® pSrcDstPadded - pointer to padded buffer, which indicates the related macroblock is
padded or not. It make sense when related macroblock is transparent one.

®  §MBX - current macroblock's X direction index in VOP, the start one is 0.
® §MBY - current macroblock's Y direction index in VOP, the start one is 0.
®* stepYA —width of luminance/alpha plane in byte.
® stepCbCr —width of chronminance plane in byte.

Output Arguments

pSrcDstCurrY - pointer to the top-left of current luminance (YY) blocks.
pSrcDstCurrCh — pointer to the top-left of current chrominance (Ch) block.
pSrcDstCurrCr — pointer to the top-left of current chrominance (Cr) block.
pSrcDstCurrA — pointer to the top-left of current alpha (A) block in current VOP.

pSrcDstPadded - pointer to padded buffer, which indicates the related macroblock is padded or
not.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the pointers: pSrcDstCurrY, pSrcDstCurrCh, pSrcDstCurrCr,
pTrasptMBLeft, pTrasptMBTop, pPadded is NULL.

— While stepYA < 16 or stepChCr < 8, or stepYA or stepChCr is not 4 multiple.

— "iIMBX <0oriMBY <0;

— While anyone of pSrcDstCurrY, pSrcDstCurrCh, pSrcDstCurrCr, pSrcDstCurrA (if make
sense) is not 32-bit align.

% NOTE. One line of continuous transparent status buffer needed,
_ pTrasptMBLeft points to the left neighboring macroblock in that buffer.
*(pTrasptMBLeft +1) stores the top macroblock's transparent status.

NOTE. One line of continuous padded status buffer needed, pSrcDstPadded
points to the current macroblock's padded status, *(pSrcDstPadded -1) stores
left macroblock’s padded status.

12-43



12 Intel® IPP on Intel® PCA Processors

PadMBTransparent MPEG4 8u P4R

Prototype

IppStatus ippiPadMBTransparent _MPEG4_8u_P4R (const Ipp32u *
pSrcTrasptMBLeft, 1pp8u * pSrcDstCurrY, Ipp8u * pSrcDstCurrCb, Ipp8u *
pSrcDstCurrCr, lIpp8u * pSrcDstCurrA, lpp8u * pSrcDstPadded, Ipp8u
grayVval, int IMBX, int iMBY, int iMBXLimit, int iMBYLimit, int stepYA,
int stepCbCr);

Description

Performs general padding as current macroblock is transparent. What this function do is not only
padding itself, but also padding its neighboring macroblocks if necessary.

Input Arguments

® pSrcTrasptMBLeft — pointer to left macroblock'’s transparent buffer.

®  pSrcDstCurrY - pointer to the top-left of current luminance (Y) blocks.

® pSrcDstCurrCb — pointer to the top-left of current chrominance (Cb) block.

® pSrcDstCurrCr - pointer to the top-left of current chrominance (Cr) block.

® pSrcDstCurrA - pointer to the top-left of current alpha (A) block in current VOP.

® pSrcTrasptMBLeft - pointer to transparent buffer of the left neighboring macroblock.

® pSrcDstPadded - pointer to padded buffer, which indicates the related macroblock is
padded or not.

* grayVval -he gray value to fill the exterior macroblock/block. It should be set to
2bits_per_pixel - 1, where bits_per_pixel = 8 here.

®* §MBX - current macroblock's X direction index in VOP

® §MBY - current macroblock's Y direction index in VOP

® iMBXLimit - the number of macroblock in current VOP's X direction.
® iMBYLimit - the number of macroblock in current VOP's Y direction.
®* stepYA —width of luminance/alpha plane in byte.

® stepCbCr - width of chronminance plane in byte.

® stepBinary - width of binary plane in byte.
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Output Arguments

®  pSrcDstCurrY - pointer to the top-left of current luminance (Y) blocks.

®  PSrcDstCurrCb - pointer to the top-left of current chrominance (Cb) block.

®  PSrcDstCurrCr — pointer to the top-left of current chrominance (Cr) block.

® pSrcDstCurrA - pointer to the top-left of current alpha (A) block in current VOP.

® PSrcDstPadded - pointer to padded buffer, which indicates the related macroblock is
padded or not.

Returns
IPP status code
BAD_ARGUMENT_DEFINITION:

— At least one of the pointers: pSrcDstCurrY, pSrcDstCurrCh, pSrcDstCurrCr,
pSrcTrasptMBLeft, pSrcDstPadded is NULL.

— While stepYA < 16, stepChCr < 8 or stepBinary < 2. stepYA or stepCbCr is not 4
multiple.

— iIMBX <0, iMBY <0, iMBX >= iMBXLimit or iIMBY >= iMBY Limit;

s NOTE. At least one of the pointers: pSrcDstCurrY, pSrcDstCurrCb,

_ pSrcDstCurrCr, pSrcTrasptMBLeft, pSrcDstPadded is NULL.One line of
continuous padded status buffer needed, pSrcDstPadded points to the current
macroblock's padded status, *(pSrcDstPadded -1) stores left macroblock's
padded status.

NOTE. While stepYA < 16, stepChCr < 8 or stepBinary < 2. stepYA or
stepCbCr is not 4 multiple.

NOTE. iMBX <0, iMBY < 0, iMBX >= iMBXLimit or iMBY >= iMBYLimit;
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PadMBPartial MPEG4_8u_P4R
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Input Arguments
IppStatus ippiPadMBPartial _MPEG4_8u_P4R (const lpp8u * pSrcBAB, const

Ipp32u * pSrcTrasptMBLeft, Ipp8u * pSrcDstCurrY, Ipp8u *

pSrcDstCurrCb, 1pp8u * pSrcDstCurrCr, Ipp8u * pSrcDstCurrA, Ipp8u *
pSrcDstPadded, int iMBX, int iMBY, int stepYA, int stepCbCr, int
stepBinary);

Description

Performs general padding as current macroblock is partial. What this function do is not only
padding itself, but also padding it's necessary neighboring macroblocks.

Input Arguments

pSrcBAB - pointer to the binary alpha block in current VOP.

pSrcDstCurrY - pointer to the top-left of current luminance () block in current VOP.
pSrcDstCurrCb — pointer to the top-left of current chrominance (Cb) block in current VOP.
pSrcDstCurrCr — pointer to the top-left of current chrominance (Cr) block in current VOP.
pSrcDstCurrA — pointer to the top-left of current alpha (A) block in current VOP.
pSrcTrasptMBLeft — pointer to left macroblock's transparent buffer.

pSrcDstPadded - pointer to padded buffer, which indicates the related macroblock is
padded or not. It make sense when related macroblock is transparent one

iMBX — current macroblock’s X direction index in VOP, the start one is 0.
iMBY - current macroblock's Y direction index in VOP, the start one is 0.
stepYA — width of luminance/alpha plane in byte.

stepCbCr - width of chronminance plane in byte.

stepBinary — width of binary plane in byte.

Output Arguments

pSrcDstCurrY - pointer to the top-left of current luminance (YY) blocks.
pSrcDstCurrCh — pointer to the top-left of current chrominance (Cb) block.
pSrcDstCurrCr — pointer to the top-left of current chrominance (Cr) block.
pSrcDstCurrA — pointer to the top-left of current alpha (A) block in current VOP.
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® pSrcDstPadded - pointer to padded buffer, which indicates the related macroblock is
padded or not.

Returns
® |PP status code.
* BAD _ARGUMENT_DEFINITION:
— At least one of the pointers: pSrcBAB, pSrcDstCurrY, pSrcDstCurrCh, pSrcDstCurrCr,
pTrasptMBLeft, pTrasptMBTop, pPadded is NULL.
— While stepYA < 16, stepCbCr < 8 or stepBinary < 2, or stepYA or stepChCr is not 4
multiple.
— iIMBX<0oriMBY <0;
— While anyone of pSrcDstCurrY, pSrcDstCurrCh, pSrcDstCurrCr, pSrcDstCurrA (if make
sense) is not 32-bit align.

% NOTE. One line of continuous transparent status buffer needed,
_ pTrasptMBLeft points to the left neighboring macroblock in that buffer.
*(pTrasptMBLeft +1) stores the top macroblock's transparent status.

NOTE. One line of continuous padded status buffer needed, pSrcDstPadded
points to the current macroblock’s padded status, *(pSrcDstPadded -1) stores
left macroblock’s padded status.

Examples

Transparent Status Retrieving
Ipp8u * pTranspBuf[TRANSP_BUF_SIZE];
Ipp8u * pTransp = (Ipp8u *) (Ipp32u)pTranspBuf | 0x3) + 1); /* pTransp is
32-bit aligned */
Ipp32u * pTranspMB = (Ipp32u *)pTransp;/* MB transparent status pointer
*/

if ( *pTranspMB '= IPP_VIDEO_TRANSPARENT ) {/* non-transparent MB */
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if ( pTransp[0] == IPP_VIDEO_TRANSPARENT ) { /* block O is

transparent, ... */
/* .. ..
} else if ( pTransp[1l] == IPP_VIDEO_TRANSPARENT ) {/* If block 1 is
transparent, */
VAR 4
}
}
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This chapter describes the Intel® Integrated Performance Primitives (Intel® IPP) on Intel®
Personal Internet Client Architecture Processors (PCA processors) and Intel® PCA Processors
with Intel® Wireless MMX™ Technology (PCA processors with MMX ™), that are built to
support the ISO/IEC 14496-2 MPEG-4 video encoder. MPEG-4 is a widely used coding method
for video signals in various applications such as digital storage media, internet, various forms of
wired or wireless communication, etc.

The Application Programming Interface (API) for the MPEG-4 encoder supports the following
features:

®  Progressive, non-scalable texture encoding.

* Block-based VLC encoding and zigzag scan.

*  Motion vector encoding.

®  Motion estimation, including modified full length search (SEA, successive elimination
algorithm) and fast search (MVVFAST, motion vector field adaptive search technique),
including integer pixel search and half pixel search, including 16x16 search and 8x8 search.

* Block layer coefficient encoding, including intra-DC/AC prediction (for intra blocks),
quantization, and DCT, with appropriate clipping on each step, also provides reconstructed
data.

The remainder of this chapter provides details on the Intel® IPP MPEG-4 video encoder API.
“Data Types and Structures” focuses on data types and structures used in the primitives. “MPEG-4
Encoder Primitives” describes each API definition and function.

Data Types and Structures

This section describes the data types and structures of the Intel® IPP MPEG-4 video encoder.
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Video Components

Video components are defined as follows:

typedef enum {
IPP_VIDEO_LUMINANCE, /* Luminance component */
IPP_VIDEO_CHROMINANCE, /* chrominance component */
IPP_VIDEO_ALPHA /* Alpha component */

} IppVideoComponent;

Pixel Planes

13-2

The encoder’s input and output is stored in pixel planes denoted by Y plane (luminance
component), Cb plane and Cr plane (chrominance components).

The size of Y plane relates to, but is not equal to, that of the VOL as a result of the VOP
expansion. Since luminance VOP is expanded (and padded) with 16 pixels to each of the four
directions, the width and height of the Y plane are 32 pixels larger than those of the VOL
respectively.

The size (W, H) of Cb or Cr plane is half the size of Y plane, because chrominance VOPs are
expanded with 8 pixels to each direction.

Figure 13-1 shows the relationship among pixel plane, VOL and VOP.

Allocate three sets of 32-bit word-aligned pixel planes, each consisting of a Y plane, a Cb plane
and a Cr plane. These pixel plane sets are referred to as current and forward.and backward. BVOP
is not supported by the encoder.
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Figure 13-1 Pixel Plane, VOL, and VOP
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Macroblock Types

Macroblock types in I-, P- and B-VVOP are defined as follows:

typedef enum {
IPP_VIDEO_INTER =
IPP_VIDEO_INTER_Q =
IPP_ VIDEO_INTER4V =
IPP_ VIDEO_INTRA =
IPP_ VIDEO_INTRA Q =
IPP_ VIDEO_INTER4V_Q =
IPP_ VIDEO_DIRECT =
IPP_ VIDEO_INTERPOLATE =
I1PP_ VIDEO_BACKWARD =

1PP_ VIDEO_FORWARD =
1PP_VIDEO_NOTCODED =
}ppMacroblockType;

© 0o N O 0o~ WDN PP O

=
o

Motion Vector

Motion vector is defined as:

typedef struct {
Ippl6s dx;
Ippl6s dy;

}ppMotionVector;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

W W W W W U = = TV U T

picture or P-VOP */
picture or P-VOP */
picture or P-VOP */

and P picture, I- and P-VOP */
and P picture, I- and P-VOP */
picture or P-VOP (H.263)*/
picture or B-VOP (MPEG-4 only) */
picture or B-VOP */

picture or B-VOP */

picture or B-VOP */

picture or B-VOP */

Two kinds of motion vectors are used in the Intel® IPP MPEG-4 CODEC. One is for texture (in
Q1 format) and the other is for shape (in QO format).

Transparent Status

Transparent status is a three-state value in one byte, or 1pp8u. The three possible states are

defined as follows:
enum {

IPP_VIDEO_TRANSPARENT= 0, /* Wholly transparent */
IPP_VIDEO_PARTIAL =1, /* Partially transparent */
IPP_VIDEO OPAQUE = 2 /* Opaque */

¥

Transparent status is block based in MPEG-4. Therefore:

®  There is one buffer per macroblock (MB).
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® Elements are block-based and contiguously stored.

®  There is one byte (1pp8u) per element for one block.

®  There are four elements per MB.

® The first element (for block 0) must be 32-bit aligned. (which should be ensured by user).
*  MB transparent status is determined by evaluating the value of the whole word.

Direction

Direction is used for predicting DC/AC and for zigzag scanning:
enum {
IPP_VIDEO_NONE
IPP_VIDEO_HORIZONTAL
IPP_VIDEO_VERTICAL

nonon
N B O

¥

Rectangle Plane

typedef struct {
int x;
int y;
int width;
int height;
}ppiRect;

Bilinear Interpolation Type

Bilinear interpolation type is used for motion estimation, compensation, and reconstruction.

enum {
IPP_VIDEO_ INTEGER_PIXEL

0,/* case “a” in Figure 13-2 */
IPP_VIDEO HALF PIXEL_X 1,/* case “b” in Figure 13-2 */
IPP_VIDEO_HALF PIXEL_Y 2,/* case “c” in Figure 13-2 */
IPP_VIDEO_HALF_PIXEL_XY = 3/* case “d” in Figure 13-2 */
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Figure 13-2 Halfpixed Prediction by Bilinear Interpolation
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Buffers

The following sections describes buffers and their layout required by the Intel® IPP. Users must
allocate and/or initialize the buffers according to these specifications.

Video Plane Buffers

Users must allocate buffers to store the raw video object (MPEG-4), consisting of texture
components (Y/Cb/Cr). The presence of each component depends on the VOL shape type, as
determined by video_object_layer_shape. Table 13-1 shows these dependencies, where “x”
means required and “-” means not required.

Table 13-1 Video Plane Buffer Dependencies
Texture Alpha
VOL Shape Type
Y/Cb/Cr Planes Binary Plane
Rectangular X -
Binary X X
Binary only - X
Grayscale X X
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Two sets of these buffers are needed — one for the current picture/\VO and the other for the
previous (forward-reference) picture/VO. If bi-directional prediction (B-VOP) is supported, an
additional set of buffer must be allocated.

Motion Vector for Texture (in Q1 format)

Depending on the MB type, there are from zero to eight valid motion vector(s) in a MB. A motion
vector (MV) buffer contains four elements of IppMotionVvector data. Elements are block-based
and contiguously stored per each buffer. Allocate one MV buffer per MB for P-VOP. If B-VOP is
supported, allocate two MV buffers for bi-directional prediction. The following vector
manipulation scheme adopted by the Intel® IPP MPEG-4 CODEC, where pMVForward and
pMvBackward denote the two vector buffers allocated for each MB:

®  Two buffers per MB in P- or B-VOP, including pMvForward[4] and pMvBackward[4].
®  Elements are block-based, and contiguously stored per each buffer.
®* |nP-VOP, only pMmvForward[] is used and valid. pMmvBackward[] is not used.

* |f MB type is “IPP_VIDEO_INTER"or “1PP_VIDEO_INTER_Q “, and if not transparent,
pMVForward[0]-[3] must be filled with the same decoded MV.

* |f MB is INTRA coded or skipped, pMVForward[0]-[3] must be padded with zero MVs.
* |InB-VOP, pMVForward[] and pMvVBackward[] may or may not be used, depending on the
MB type.

* InB-VOP, if MB type is not “IPP_VIDEO_DIRECT “, then pMVForward[1]-[3] and
pMvVBackward[1]-[3] are not used.

Coordinates are related to the absolute coordinate system shown in Figure 7-19 of ISO/IEC
14496-2: Information Technology - Generic Coding of Audio-Visual Objects - Part 2: Visual (FD,
October 1998).

Quantization Parameter Buffer

Allocate one “row buffer”, storing the quantization parameters (QPs) for the P-VVOP with one byte
(Ipp8u) each element. This buffer is used for coefficient prediction. Before decoding an INTRA
coded MB, the corresponding element in the QP buffer saves the QP of the MB of the upper MB
row. After a MB is decoded, the corresponding element (the element storing QP of the MB above)
must be updated by the QP of the current MB.

Coefficient Buffers

Allocate two coefficient buffers for Intra DC/AC prediction. One is a row buffer containing
((mb_num_per_row * 2 + 1) * 8) elements of 1pp16s, and the other is a column buffer containing
16 elements of Ippl6s.
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13-8

Every eight elements of both row and column buffers, plus one element 8 units ahead in the row
buffer, are used to perform DC/AC prediction for an INTRA-coded block in a MB. Each group of
them contains the coefficient predictors of the neighboring block that is spatially above or to the
left of the block currently to be decoded. Within every eight elements, the first element contains
the DC coefficient and the other elements contain quantized AC coefficients. A negative-valued
DC coefficient indicates that this neighboring block is not INTRA-coded or out of boundary, thus
neither the DC nor the AC coefficients are valid.

Before decoding each VOP, initialize all DC elements in the row buffer to -1. Also, before
decoding each MB row, initialize the two DC elements in the column buffer -1.

The detailed buffer layout is illustrated in Figure 13-3.

MVFAST Buffer

Allocate two buffers storing the search status for the 16*16 integer pixel search and the 8*8
integer pixel search respectively. For each buffer, there is one bit for each searching point. A bit
value of 1 indicates that the pointer has been checked before or that it is out of search range. Any
other value indicates that this candidate should be checked. Accordingly, the search range
determines the buffer size. The buffer size is as follows:

Buffer size = (2*searchRange+5) * ((searchRange+l1)/8+searchRange/8 + 4)
(Unit: byte)

E NOTE. Two buffers must be initialized before they are used. See Figure 13-3.

_ That is, the first and last two lines should be padded with OxFF, while the first
and last column should be padded respectively with 0x01 and 0x80. In general,
the searchRanges for 16*16 and 8*8 are different. The searchRange for 16*16
comes from the parameter file, while the searchRange for 8*8 is set to 2.
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Figure 13-3 Initialization of Bit Plane
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MPEG-4 Encoder Primitives

This section describes all of the MPEG-4 video encoder API primitives.

BlockMatch_Integer 16x16 SEA

Prototype

IppStatus ippiBlockMatch_Integer_16x16_SEA (Ipp8u * pSrcRef, Ipp8u *
pSrcCurr, Ippl6u *pSrcSumBlk, IppMotionVector *pSrcRefMV,
IppCoordinate * pSrcPointPos, IppiRect * pSrcRefRect, int *
pSrcDstminSAD, IppMotionVector * pDstMV, int step, int searchRange,
int flag);
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13-10

Description

Performs 16x16 size macro block match with Successive Elimination Algorithm (SEA), the
searched motion vector have same accuracy with Exhaust Search Algorithm (ESA). This function
and ippiSumNorm_VOP_MPEG4 8ul6u are used in pairs typically, because the sum norm plane
is one input of this function.

Input Arguments
® pSrcRef — pointer to the original or reconstructed reference Y plane. The pointer position is
the same as the current macroblock’s position in the current plane.

® pSrcCurr — pointer to the current original macroblock, which has been extracted from
current original plane

®  pSrcSumBIk — pointer to current macroblock in the sum plane

®  pSrcRefMV — pointer to the predicted motion vector

® pSrcPointPos — pointer to the position of current macroblock in current plane.
® pSrcRefRect - pointer to the valid rectangular in reference plane

®  pSrcDstminSAD — pointer to the minSAD, which from SAD16X16 at mv = (0,0).
®* step - the step in reference Y-Plane

® searchRange - search range in 16X16 integer pixel search

*  flag - algorithm selected flag. For implementation of PCA processors with MMX™  this
parameter must be 5. For the PCA processors, the parameter flag € {4, 8}.

Output Arguments
®  pSrcDstminSAD — pointer to the least SAD after 16X16 integer search

®* pDstMV — pointer to destination motion vector for the current macroblock with integer pixel
definition

Returns
®  ippStsNoErr — no error
® ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: pSrcRef, pSrcCurr, pSrcSumBlKk,
pSrcPointPos, pSrcRefRect, pSrcDstminSAD, pDsStMV.

— At least one of the following pointers is not 64-bit aligned: pSrcRe¥, pSrcCurr,
pSrcSumBIk.

— If pSrcRefMV is not NULL, *pSrcRefMV exceeds the search range.

— pSrcRefRect->width < MB_SIZE or pSrcRefRect->height < MB_SIZE.
— *pSrcPointPos exceeds the zone indicated by pSrcRefRect.

— step < pSrcRefRect->width or step is not a multiple of 8
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— searchRange <=0
— TFlag ¢#{4, 8} (for PCA processors)
— flag {5} (for PCA processors with MMX™™)

FindMVpred MPEG4

Prototype

IppStatus ippiFindMVpred_MPEG4 (IppMotionVector* pSrcMVCurMB,
IppMotionVector* pSrcCandMVl, IppMotionVector™®
pSrcCandMV2, IppMotionVector* pSrcCandMV3, Ipp8u*
pSrcCandTranspl, Ipp8u* pSrcCandTransp2, Ipp8u* pSrcCandTransp3, lpp8u*
pSrcTranspCurr, lIppMotionVector* pDstMVPred, lIppMotionVector*
pDstMVPredME, int iBIKk);

Description

Finds the vector predictor from three candidates and outputs three candidates for MVFAST, if
pDstMVPredME is not NULL.

Input Arguments

®  pSrcMVCurMB — pointers to the current Y macroblock buffers

® pSrcCandMV1 — pointers to the left candidate motion vector buffers

® pSrcCandMV2 - pointers to the top candidate motion vector buffers

®  pSrcCandMV3 — pointers to the right-top candidate motion vector buffers

® pSrcCandTranspl, pSrcCandTransp2, pSrcCandTransp3 — pointers to the transparent
status buffers of the corresponding macroblock or block

® pSrcTranspCurr — pointers to the transparent status buffers of the current macroblock or
block

®* iBlk -the index of block in current macroblock

Output Arguments
®* pDstMVPred — pointer to the predicted motion vector

®* pDstMVPredME — pointer to three motion vector candidates. This is used only to determine
motion activity when MVFAST is selected.
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Returns

ippStsNoErr —no error
ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: pSrcMVCurMB, pSrcCandTranspl,
pSrcCandTransp2, pSrcCandTransp3, pSrcTranspCurr, pDstMVPred.

— iBIk exceeds [0,3].

BlockMatch_Integer 16x16 MVFAST

13-12

Prototype
IppStatus ippiBlockMatch_Integer_16x16_MVFAST (1pp8u * pSrcRef, Ipp8u *

pSrcCurr, IppMotionVector *pSrcCanMV, IppMotionVector *pSrcRefMV,

IppCoordinate * pSrcPointPos, IppiRect * pSrcRefRect, Ipp8u *

pSrcSadMap, int * pFlag, int * pSrcDstSAD, IppMotionVector * pDstMV,

int refStep, int searchRange);

Description
Performs 16x16 size block match with large and/or small diamond search.

Input Arguments

pSrcRef — pointer to the original or reconstructed reference Y plane. The pointer position is
same as current macroblock’s position in current plane.

pSrcCurr — pointer to the current original macroblock, which has been extracted from
current original plane

PSrcCanMV — pointer to the left, top and right-top reference motion vector respectively
pSrcRefMV — pointer to the predicted motion vector

pSrcPointPos — pointer to the position of current macroblock in current plane
pSrcRefRec — pointer to the valid rectangular in reference plane

pSrcSadMap — pointer to the initial address of bit plane, which is used to store the state of
each search point. The buffer size for pSrcSadMap is
(2*SearchRange+5)*((SearchRange+1)/8 + SearchRange/8 +4) bytes.

pFlag — pointer to the flag used for SAD calculation

pSrcDstSAD — pointer to the initial SAD
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®* refStep - the step in reference Y-Plane
® searchRange — search range in 16X16 integer pixel searchOutput Arguments.

% NOTE. For the buffer size and initialization for pSrcSadMap and
e pSrcBlockSadMap, see Figure 13-3 and its context.

Output Arguments
®  pSrcDstSAD — pointer to the updated SAD

®* PDstMV — pointer to destination motion vector for current macroblock with integer pixel
definition

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: pSrcRef, pSrcCurr, pSrcrefiuy,
pSrcCanMV, pSrcPointPos, pSrcRefRect, pSrcSadMap, pFlag, pSrcDstSAD,
pDstMV.

— At least one of the following parameters is not 64-bit aligned: pSrcRef, pSrcCurr,
refStep.

— At least one of the components’ absolute value (Jdx| or |dy|) is greater than
(2*searchRange+1): pSrcRefMV, pSrcCanMV[0], pSrcCanMV[1], pSrcCanMV[2].

— At least one of the following cases is true:
pSrcRefRect->width or pSrcRefRect->height is less than or equal 16

pSrcPointPos->x is out of range from left boarder of pSrcRefRect to its right
boarder minus macroblock size.

pSrcPointPos->y is out of range from top boarder of pSrcRefRect to its bottom
boarder minus macroblock size.

searchRange exceeds (0,1024]; *pFlag is greater than 16.
refStep is less than or equal 16.
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SumNorm_VOP _MPEG4 8ul6u

Prototype

IppStatus ippiSumNorm_VOP_MPEG4_8ul6u (Ipp8u * pSrcRef, IppiRect *
pSrcRefRect, Ippl6u * pDstSumRef, int flag, int step);

Description

Performs summation of sub-region in a plane pointed by pSrcRef, which is a premise for motion
estimation (SEA). From performance perspective, the geometry for summation is two 1x8 stripes
indicated by Figure 1.1.6 1 Geometry for the calculation of the sum norm. As hinted in this figure,
the result data in sum norm plane is the summation of the pixels with the same color (two 1x8
stripe) in reference plane. This summation operation will slide through the whole region specified
by pSrcRefRect in reference plane. The result data is placed in sum norm plane pointed by
pDstSumRef. The count of valid summation data should be (pSrcRefRect->width-4) x
(pSrcRefRect ->height-7). This specific geometry for summation is very suitable for WMX
instruction set implementation.

pSrcRef ;sttSumRef
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Input Arguments

® pSrcRef - pointer to the original or reconstructed reference Y plane, the pointer position is
the top left of the padded plane

®* pSrcRefRect — pointer to the valid rectangular in reference plane, which describes the target
summation zone
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*  flag - algorithm selected flag. For implementation of PCA processors with MMX™  this
parameter must be 5. For the PCA processors, the parameter flag € {4, 8}.

® step - the step in reference Y-Plane, and reference summation plane

Output Arguments
®* pDstSumRef — pointer to summation plane. The pointer position is the top left of the padded
plane.

®  Returns: ippStsNoErr — no error

® ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: pSrcRef, pSrcRefRect, pDstSumRef
— At least one of the following pointers is not 64-bit aligned: pSrcRe¥, pDstSumRef

— pSrcRefRect->width<=0, pSrcRefRect ->height<=0 or pSrcRefRect->width
is not a multiple of 8

— step < pSrcRefRect->width or step is not a multiple of 8
— searchRange <=0

— Tlag {4, 8} (for PCA processors)

— flag {5} (for PCA processors with MMX ™M)

Quantintra MPEG4 16s 1

Prototype

IppStatus ippiQuantintra MPEG4 _16s_1 (Ippl6s * pSrcDst, Ipp8u QP, int
blocklIndex, const int * pQMatrix);

Description
Performs quantization on an intra block coefficients. This function supports bits_per_pixel == 8.

Input Arguments
® PSrcDst — pointer to the input intra block coefficients
® QP - quantization parameter (quantiser_scale).

* blocklIndex — block index indicating the component type and position as defined in
subclause 6.1.3.8, of ISO/IEC 14496-2. Furthermore, indexes 6 to 9 indicate the alpha blocks
spatially corresponding to luminance blocks 0 to 3 in the same macroblock.
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®*  PQMatrix — If the second inverse quantization method is used, PQMatrix is NULL. If the first
inverse quantization method is used, it points to the quantization weighting coefficients buffer
(for intra MB) whose first 64 elements are the quantization weighting matrix in Q0. The
second 64 elements are their reciprocals in Q21.

Output Arguments

PSrcDst — pointer to the output (quantized) intra block coefficients. The output coefficients are
saturated to lie in the range:[-127,127].

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— pSrcDstis NULL.
— blockIndex <0 or blockIndex >= 10
— QP<=0o0rQP>=32
— foranon-NULL pQMatrix, pQMatrix[0]* pQMatrix[64]!=(1<<21)

Quantinter MPEG4 16s 1

13-16

Prototype

IppStatus ippiQuantinter_MPEG4_16s_1 (Ippl6s * pSrcDst, Ipp8u QP, const
int * pQMatrix);

Description
Performs quantization on an inter block coefficients. This function supports bits_per_pixel == 8.

Input Arguments
®  PSrcDst — pointer to the input inter block coefficients
® QP - quantization parameter (quantizer_scale)

®* PQMatrix — If the second inverse quantization method is used, PQMatrix is NULL. If the
first inverse quantization method is used, it points to the quantization weighting coefficient’s
buffer (for inter MB) whose first 64 elements are the quantization weighting matrix in QO.
The second 64 elements are their reciprocals in Q21.
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Output Arguments

PSrcDst — pointer to the output (quantized) inter block coefficients. The output coefficients will
saturate on the interval [-127, 127].

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— pSrcDstis NULL.
— QP<=0o0rQP>=32.
— pQMatrix[0]* pQMatrix[64] '= (1<<21) while pQMatrix is not NULL

EncodeVLCZigzag IntraDCVLC _MPEG4 16slu
EncodeVLCZigzag IntraACVLC_MPEG4 16slu

Prototype

IppStatus ippiEncodeVLCZigzag IntraDCVLC_MPEG4_16slu (lIpp8u
**ppBitStream, int *pBitOffset, Ippl6s *pQDctBIkCoef, I1pp8u
predDir, Ipp8u pattern, IppVideoComponent videoComp);

IppStatus ippiEncodeVLCZigzag_ IntraACVLC_MPEG4_16slu (Ipp8u **
ppBitStream, int *pBitOffset, Ippl6s * pQDctBIkCoef, I1pp8u
predDir, Ipp8u pattern);

Description
Performs zigzag scanning and VLC encoding for one intra block.

Input Arguments

* ppBitStream — pointer to the pointer to the current byte in the bit stream

®* pBitOffset — pointer to the bit position in the byte pointed by *ppBitStream. Valid within 0
to7.

®*  pQDctBIkCoef — pointer to the quantized DCT coefficient

®* predDir — AC prediction direction, which is used to decide the zigzag scan pattern. This
takes one of the following values:

— IPP_VIDEO_NONE — AC prediction not used. Performs classical zigzag scan.
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— IPP_VIDEO_HORIZONTAL - Horizontal prediction. Performs alternate-vertical zigzag
scan.

— IPP_VIDEO_VERTICAL - Vertical prediction. Performs alternate-horizontal zigzag
scan.

®* pattern - block pattern which is used to decide whether this block is encoded
® videoComp — video component type (luminance, chrominance) of the current block

Output Arguments
®* ppBitStream—*ppBitStream is updated after the block is encoded, so that it points to the
current byte in the bit stream buffer.

* pBitOffset — *pBitOffset is updated so that it points to the current bit position in the
byte pointed by *ppBitStream.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: ppBitStream, *ppBitStream,
pBitOffset, pQDctBIkCoef.
— *pBitOffset <0, or *pBitOffset >7.
— PredDir is not one of: IPP_VIDEO_NONE, IPP_VIDEO_HORIZONTAL, or
IPP_VIDEO_VERTICAL.
— VideoComp is not one component of enum IppVideoComponent.

EncodeVLCZigzag Inter MPEG4 16slu

Prototype

IppStatus ippiEncodeVLCZigzag Inter MPEG4_16slu (lpp8u **ppBitStream,
int * pBitOffset, lIppl6s *pQDctBIkCoef, Ipp8u pattern);

Description
Performs classical zigzag scanning and VLC encoding for one inter block.
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Input Arguments

* ppBitStream — pointer to the pointer to the current byte in the bit stream

* pBitOffset — pointer to the bit position in the byte pointed by *ppBitStream. Valid within
Oto7

®* pQDctBIkCoef — pointer to the quantized DCT coefficient

® pattern - block pattern which is used to decide whether this block is encoded

Output Arguments

®* ppBitStream - *ppBitStream is updated after the block is encoded so that it points to the
current byte in the bit stream buffer.

®* pBitOffset — *pBitOffset is updated so that it points to the current bit position in the
byte pointed by *ppBitStream.

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the pointers: is NULL: ppBitStream, *ppBitStream, pBitOffset,
pQDctBlkCoef

— *pBitOffset <0, or *pBitOffset >7.
— At least one of the following pointers is NULL: pSrc, pDst.

ComputeTextureErrorBlock SAD 8ulé6s

Prototype

IppStatus ippiComputeTextureErrorBlock _SAD_8ul6s (const lpp8u *pSrc, int
srcStep, const Ipp8u *pSrcRef, Ippl6és * pDst, int *pDstSAD);

Description
Computes texture error of the block. SAD is also exported.

Input Arguments
® pSrc - pointer to the source plane. This should be aligned on an 8-byte boundary.
®* srcStep - step of the source plane
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®* pSrcRef — pointer to the reference buffer, an 8x8 block. This should be aligned on an 8-byte
boundary.

Output Arguments

® PDst - pointer to the destination buffer, an 8x8 block. This should be aligned on an 8-byte
boundary.
®  pDstSAD - pointer to the Sum of Absolute Differences (SAD) value

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: pSrc, pSrcRef, pDst and pDstSAD.
— pSrc is not 8-byte aligned.
— SrcStep <=0 or srcStep is not a multiple of 8.
— pSrcRef is not 8-byte aligned.
— pDst is not 8-byte aligned.

ComputeTextureErrorBlock 8ul6s
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IppStatus ippiComputeTextureErrorBlock _8ul6s (const Ipp8u *pSrc, int
srcStep, const Ipp8u *pSrcRef, Ippl6s * pDst);

Description
Computes the texture error of the block.

Input Arguments

® pSrc - pointer to the source plane. This should be aligned on an 8-byte boundary.

® srcStep - step of the source plane

® pSrcRef — pointer to the reference buffer, an 8x8 block. This should be aligned on an 8-byte
boundary.

Output Arguments

®* pDst - pointer to the destination buffer, an 8x8 block. This should be aligned on an 8-byte
boundary.
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Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: pSrc, pSrcRef, pDst.
— pSrc is not 8-byte aligned.
— SrcStep <=0 or srcStep is not a multiple of 8.
— pSrcRef is not 8-byte aligned.
— pDst is not 8-byte aligned

MotionEstimation_16x16_SEA

Prototype

IppStatus ippiMotionEstimation_16x16_SEA(lpp8u * pSrcRef, Ipp8u *
pSrcReconRef, Ippl6u *pSrcSumBlk, Ipp8u * pSrcCurr, IppiRect *
pSrcRefRect, IppCoordinate * pSrcPointPos, IppMotionVector
*pSrcRefMV, IppMotionVector * pDstMV, Ipp8u *pPreMbtype, int
*pDstSAD, int step, int roundingControl, int searchRange, int flag);

Description

Completes 16X16 size motion estimation, the core is Successive Elimination Algorithm (SEA),
the function not only covers 16X16 integer and half pixel search, 8X8 integer and half pixel
search, but also decides intra/inter choice and 1mv/4mv choice. At the same time, it provides the
summation of current MB's residual, which is indispensable to rate control module. This function
and ippiSumNorm_VOP_MPEG4 8ul6u are used in pairs typically, because the sum norm plane
is one input of this function.

Input Arguments

® pSrcRef — pointer to the original Y plane. the pointer position is same as current
macroblock’s position in current plane

® pSrcReconRef — pointer to the reconstructed reference Y plane, the pointer position is same
as current macroblock’s position in current plane

®  pSrcSumBIk — pointer to the current macroblock in the sum plane
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®  pSrcCurr — pointer to the current original macroblock, which has been extracted from
current original plane

% NOTE. pSrcCurr points to a continuous macroblock size buffer, which stores
= extracted current original pixel from current original Y plane.

® pSrcRefRect - pointer to the valid rectangular in reference plane
® pSrcPointPos — pointer to the position of the current macroblock in current plane

® pSrcRefMV — pointer to the predicted motion vector generated from the neighboring motion
vector

® step - the step in reference Y-Plane
®* roundingControl - rounding control bit for half pixel motion estimation
® searchRange - search range in the 16X16 integer block match

*  flag - algorithm selected flag. For implementation of PCA processors with MMX™  this
parameter must be 5. For the PCA processors, the parameter flag € {4, 8}.

Output Arguments
®*  pDstMV - pointer to the destination 4-motion vectors

% NOTE. pDstMV points to 4 MV buffer’s first one, 4 MVs are stored
_ continuously. If LMV mode is selected, then 4 MV buffer stores same one.

® pDstSAD - pointer to the least SAD after motion estimation
®* pPreMbtype — pointer to pre-Mbtype, which stores the Intra/Inter, IMV/4MV information

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: pSrcCurr, pSrcSumBlKk,
pSrcReconRef, pDstMV, pDstPreMbtype, pDstSAD, pSrcRefRect, pSrcPointPos

— At least one of the following pointers is not 64-bit aligned: pSrcCurr, pSrcSumBIK,
pSrcReconRef, pSrcRef (if pSrcRef is not NULL)

— If pSrcRefMV is not NULL, *pSrcRefMV exceeds search range
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— pSrcRefRect->width < MB_SIZE or pSrcRefRect->height < MB_SIZE
— *pSrcPointPos exceeds the zone indicated by pSrcRefRect

— step < pSrcRefRect->width or step is not a multiple of 8

— searchRange <=0

— Tlag {4, 8} (for PCA processors)

— flag {5} (for PCA processors with MMX ™M)

MotionEstimation_16x16 MVFAST

Prototype
IppStatus ippiMotionEstimation_16x16_MVFAST (Ipp8u * pSrcRef, lpp8u *

pSrcReconRef, Ipp8u * pSrcCurr, IppMotionVector * pSrcCanMV,
IppMotionVector * pSrcRefMV, IppCoordinate * pSrcPointPos, IppiRect *
pSrcRefRect, Ipp8u * pSrcSadMap, Ipp8u * pSrcBlockSadMap,
IppMotionVector *pDstMV, Ipp8u * pDstPreMBtype, int * pDstSAD, int
step, int roundingControl, int searchRange);

Description

Performs fast motion estimation using the MVFAST algorithm. Refer to N3675 (Motion Vector
Field adaptive Search Algorithm).

Input Arguments

pSrcRef — pointer to the original reference Y plane. The pointer position is the same as
current macroblock’s position in current plane.

pSrcReconRef — pointer to the reconstruction reference Y plane. The pointer position is the
same as current macroblock’s position in current plane.

pSrcCurr — pointer to the current original block, which has been stored in a 16X16 size
buffer

% NOTE. pSrcCurr points to a continuous macroblock size buffer, which stores
_

extracted current originalpixel from current original Y plane.
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® pSrcCanMV - pointer to the left, top, and right-top reference motion vector respectively
®  pSrcRefMV — pointer to the predicted motion vector

® pSrcPointPos — pointer to the position of the current macroblock in the current plane
®* pSrcRefRect — pointer to the valid rectangular in reference plane

®  pSrcSADMap — pointer to the initial address of bit plane in 16*16 block match.

® pSrcBlockSADMap — pointer to the initial address of bit plane in 8*8 block match

% NOTE. For the buffer size and initialization for pSrcSadMap and
= pSrcBlockSadMap, see Figure 13-3 and its context.

®* step - the step in reference Y-Plane
®* roundingControl — rounding control bit for half pixel motion estimation
® searchRange — search range in 16X16 integer block match

Output Arguments

®* pDstMV — pointer to the destination 4-motion vectors
[ ]

E NOTE. pDstMV points to the starting address of the motion vector buffer. If

_ 4MV mode is selected, this buffer can store 4-motion vectors. If 1MV mode is
selected, the single motion vector is duplicated into 4 copies, then stored in this
motion vector buffer.

® pDstSAD - pointer to the least SAD after motion estimation
®* pDstPreMBtype — pointer to the macroblock type: Interlv, Interdv or Intra

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments
— At least one of the following pointers is NULL: pSrcCurr, pSrcReconRef,
pSrcCanMV, pSrcRefMV, pSrcPointPos, pSrcRefRect, pSrcSadMap,
pSrcBlockSadMap, pDstMV, pDstPreMBtype, pDStSAD.
— At least one of the following parameters is not 64-bit aligned: pSrcCurr, pSrcRef (if
available), pSrcReconRef, step.
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— At least one of the components’ absolute value (Jdx| or |dy|) is greater than
(2*searchRange+1): pSrcRefMV, pSrcCanMV[0], pSrcCanMV[1], pSrcCanMV[2].

— At least one of the following cases is true:
pSrcRefRect->width or pSrcRefRect->height is less than or equal 16;
pSrcPointPos->x is out of range from left boarder of pSrcRefRect to its right
boarder minus macroblock size; pSrcPointPos->y is out of range from top boarder of
pSrcRefRect to its bottom boarder minus macroblock size;

— searchRange exceeds (0,1024]; step is less than 16; rounding. Control ¢{0,1}.

TransRecBlockCeof intra MPEG4

Prototype

IppStatus ippiTransRecBlockCeof_intra_MPEG4 (lIpp8u *pSrc, Ippl6s * pDst,
Ipp8u * pRec, lppl6s *pPredBufRow, Ippl6s *pPredBufCol, lppl6s *
pPreACPredict, int *pSumErr,int blocklndex, Ipp8u curQp, Ipp8u
*pQpBuf, int srcStep, int dstStep,const int * pQMatrix);

Description

Quantizes the DCT coefficients, implements the AC/DC coefficients prediction of the intra block,
and stores them into buffer. Meanwhile, the texture data are reconstructed for next frame
prediction.

Input Arguments

®  PSrc - pointer to the pixels of current IntraBlock

® PCoefBufRow — pointer to the coefficient row buffer

® PCoefBufCol - pointer to the coefficient column buffer

®*  PSumErr — pointer to the sum of difference between predicted and unpredicted coefficients

®* blocklIndex — block index indicating the component type and position as defined in
subclause 6.1.3.8, of ISO/IEC 14496-2. Furthermore, indexes 6 to 9 indicate the alpha blocks
spatially corresponding to luminance blocks 0 to 3 in the same macroblock.

®  curQp - quantization parameter of the macroblock which the current block belongs to
®*  pQpBuf — pointer to the quantization parameter buffer
® srcStep — width of the source buffer
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dstStep — width of the reconstructed destination buffer

QMatrix — If the second inverse quantization method is used, QMatrix is NULL. If the first
inverse quantization method is used, it points to the quantization weighting coefficients buffer
(for intra MB) whose first 64 elements are the quantization weighting matrix in Q0. The
second 64 elements are their reciprocals in Q21.

Output Arguments

pDst — pointer to the quantized DCT coefficients buffer

pRec — pointer to the reconstructed texture

pCoefBufRow — pointer to the updated coefficient row buffer

pCoefBufCol — pointer to the updated coefficient column buffer

pPreACPredict — pointer to the predicted coefficients buffer. The first data indicate the
predicted direction of current block.

pSumErr — pointer to the updated sum of the difference between predicted and unpredicted
coefficients

Returns

ippStsNoErr —no error
ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL: pSrc, pDst, pRec, pCoefBufRow,
pCoefBufCol, pQpBuT, pPreACPredict, pSumErr.

— BlockIndex <0 or blockIndex >=10; curQP <=0 or curQP >= 32.

— SrcStep, dstStep <= 0 or not a multiple of 8.

— At least one of the following pointers is not 64-bit aligned: pSrc, pDst, pRec.
— pQMatrix[0] * pQMatrix[64] !'= (1<<21) while pQMatrix is not NULL.

TransRecBlockCeof inter MPEG4

Prototype
IppStatus ippiTransRecBlockCeof_inter_MPEG4 (lppl6s *pSrc, lppl6s *
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pDst, Ippl6s * pRec, Ipp8u QP, const int * pQMatrix);
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Description

Implements DCT, and quantizes the DCT coefficients of the inter block while reconstructing the
texture residual. There is no boundary check for the bit stream buffer.

Input Arguments
®* pSrc - For the current InterBlock, points to the residuals to be encoded.
® QP - quantization parameter.

® pQMatrix — If the second inverse quantization method is used, pQMatrix is NULL. If the
first inverse quantization method is used, it points to the quantization weighting coefficients
buffer (for intra MB) whose first 64 elements are the quantization weighting matrix in QO.
The second 64 elements are their reciprocals in Q21.

Output Arguments
®* pDst - pointer to the quantized DCT coefficients buffer
®  pRec - pointer to the reconstructed texture residuals

Returns
®  ippStsNoErr —no error
® ippStsBadArgErr — bad arguments

— At least one of the following pointers is NULL or is not 64-bit aligned: pSrc, pDst,
pRec.

— QP <=0o0rQP>=32
— pQMatrix[0] * pQMatrix[64] '= (1<<21) while pQMatrix is not NULL.

EncodeMV_MPEG4 8ul6s

Prototype

IppStatus ippiEncodeMV_MPEG4_8ul6s (Ipp8u **ppBitStream, int
*pBitOffset, IppMotionVector * pMVCurMB, IppMotionVector *
pSrcMVLeftMB, IppMotionVector * pSrcMVUpperMB, IppMotionVector *
pSrcMVUpperRightMB, Ipp8u * pTranspCurMB, Ipp8u * pTranspLeftMB,
Ipp8u * pTranspUpperMB, Ipp8u* pTranspUpperRightMB, int fcodeForward,
IppMacroblockType MBType);
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Description
Finds the prediction MV and encodes the difference.

Input Arguments

ppBitStream — pointer to the pointer to the current byte in the bit stream buffer

pBitOffset — pointer to the bit position in the byte pointed by *ppBitStream. Valid within
Oto7.

pMVCurMB — pointer to